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An Envy-Free Cake Division Protocol

Steven J. Brams and Alan D. Taylor

Our starting point is the well-known parental solution to the problem of dividing a
cake between two children so that each child thinks he or she has been treated
fairly: The parent instructs one of the children to cut the cake into two pieces in
any way he desires. The other child is then instructed to choose whichever piece
she prefers. This two-step sequence of instructions, known as “cut-and-choose,”
provides a simple example of the kind of game-theoretic algorithm that Even and
Paz [11] call a “protocol.”

Associated with the cut-and-choose protocol is a natural strategy for each child:
The first child cuts the cake into two pieces that he considers to be equal, and the
second child chooses a piece that she considers to be at least as large as the other
piece. Notice that each child’s strategy guarantees him or her “satisfaction,”
regardless of what the other child does.

The general version of this problem involves n people (“players”), each of
whom has his or her preferences over subsets of the cake given by a probability
measure.! An allocation of the cake among the players is said to be proportional if
each player receives a piece of size at least 1/a (in his or her own measure), and it
is said to be envy-free if each player receives a piece he or she would not swap for
that received by any other player. It is easy to see that an envy-free allocation is
proportional, but the converse fails unless n = 2. Thus, for example, every one of
three players may think his or her piece is at least 1 /3, but a player may think that
one of the other players has a larger piece.

The results on proportional and envy-free allocations obtained over the past 50
years tend to fall into one of four classes: (i) Existence Theorems; (ii) Moving-Knife
Solutions; (iii) Algorithms; and (iv) Protocols. We say something about each in
turn.

Existence theorems, dating back to the 1940s, are often based on some version
of Liapounoff’s Convexity Theorem [20]. Typically, they establish the existence of
an ordered partition of the cake corresponding to an envy-free allocation, often
with some additional property such as: all the measures of all the pieces are exactly
1/n [21]; or the pieces are connected sets [27 and 31]; or the allocation is also
Pareto-optimal [30 and 4]. In the words of Rebman [24, p. 33], however, these
results provide “no clue as to how to accomplish such a wonderful partition.”

There are two well-known moving-knife solutions. The first is due to Dubins
and Spanier [10] and is a moving-knife version of the Banach-Knaster last-

UIf one wants to abandon the cake metaphor, and literally work with arbitrary probability measures
on some set C, then even cut-and-choose can fail. For example, if both children have their preferences
given by the same 0-1 valued measure, i.e., the same ultrafilter, then both will want the same piece
regardless of how the cake is divided.

For everything we do in the present paper, it suffices to assume that our measures are all defined on
the same algebra &7 of subsets of C and satisfy the following two properties: (i) for every set P € &
and every finite k, P can be partitioned into k sets of equal measure, and (ii) for every P, Q € &7,
either P can be trimmed to yield a subset the same size as Q, or vice-versa.
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diminisher scheme for n people that we shall present later. (The Dubins-Spanier
scheme is easy to describe: a knife is slowly moved along the top of the cake so
that all the slices made are parallel. Each player calls “cut” when he or she is
willing to take the resulting piece as his or her allocation.) The second is a
moving-knife scheme due to Stromquist [27] that yields an envy-free allocation
among three people. (This one is not so easy to describe, because envy-freeness is
considerably harder to obtain than proportionality.)

Moving-knife schemes, however, are not the step-by-step processes one usually
associates with the term “algorithm.” A good example of what one would call an
algorithm in this context is Woodall’s scheme [32] for producing an allocation
whereby each participant gets strictly more than 1/n of the cake (according to his
own measure). This algorithm requires, as part of the input, a piece P of cake and
two distinct numbers « and B such that Player 1 thinks the measure of P is a, and
Player 2 thinks the measure of P is 8. An envy-free version of this algorithm is in
[5].

Finally, there is what Even and Paz [11] call a “protocol,” and this is the only
kind of result we are going to analyze in the present paper. Since we will be
presenting examples of protocols, as opposed to proving their non-existence, we
can afford the same level of informality in the description of what is meant by a
protocol as Even and Paz used. ,

A protocol is a computer-programmable interactive procedure that can issue
queries to the participants whose answers may affect future decisions. It may issue
instructions to the participants such as: “Choose k pieces from among these m
pieces” or “Partition this piece into k subpieces.” The protocol has no information
on the measure of the various pieces as seen by the different participants—this is
private information. Moreover, if the participants obey the protocol, then each
participant will end up with a piece after finitely many steps.

Still following [11], we define a strategy for a participant to be an adaptive
sequence of moves consistent with the protocol, which the participants choose
sequentially when called upon by the protocol. A protocol is proportional if each
of the n participants has a strategy that will guarantee him at least 1/x of the cake
(by his own measure), independently of the other participants’ strategies. (Purely
for convenience, we will henceforth use only the masculine pronoun.) Departing
from [11], we will call a protocol envy-free if each of the n participants has a
strategy that will guarantee him a piece that is, according to his own measure, at
least tied for largest.

A constructive proof of the existence of, say, a proportional protocol involves
producing three separate things: the rules of the protocol, a strategy for each of
the players, and an argument that the strategies do, in fact, guarantee each player
his proportional share. We distinguish rules and strategies by demanding that rules
be enforceable by a referee implementing the protocol.

This‘means that a statement like “Player 1 cuts the cake into n pieces” is an
acceptable rule, whereas a statement like “Player 1 cuts the cake into n pieces that
he considers to be equal” is not. This is because the latter statement cannot be
enforced by the referee, who has no knowledge of Player 1’s measure and so
cannot tell if the rule has been followed or not.

In presenting protocols, we will separate rules from strategies by placing all
strategic aspects in parentheses. This provides one with the option of reading the
rules alone in a reasonably smooth way. All arguments that the strategies perform
as advertised are placed between steps and labeled as “Aside.” For example, in
our method of presentation, cut-and-choose becomes:
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Cut-and-Choose

Step 1. Player 1 cuts the cake into 2 pieces (that he considers to be the same
size).

Step 2. Player 2 chooses a piece (that she considers to be at least tied for
largest).

Aside. Clearly, Player 1’s strategy guarantees him a piece of size exactly 1/2
in his measure, while Player 2’s strategy guarantees her a piece of size
at least 1/2 in her measure.

The modern era of cake cutting began with Steinhaus’ observation “during the
war [World War II]” [25, p. 102] that the cut-and-choose protocol could be
extended to yield a proportional protocol for three players (see [18]). He then
asked if it could be extended to yield a proportional protocol for the case n > 3.
(Steinhaus, however, never used the word “protocol.”) His question was answered
in the affirmative by Banach and Knaster and reported in [25] and [26]. The
Steinhaus and Banach-Knaster protocols introduced two key ideas that would
resurface in the envy-free solutions 15 and 50 years later.

The first idea was that of having an initial sequence of steps resulting in only
part of the cake’s being allocated (to one player in this case). The sequence is then
repeated a finite number of times, after which the entire cake has been allocated.
The second idea—and perhaps the more important of the two—was that of having
a player trim a piece to a smaller size.

Explicit mention of the lack of a constructive procedure for producing an
envy-free allocation among more than two people dates back at least to Gamow
and Stern [14]. The first breakthroughs on this problem occurred in the late 1950s
and early 1960s, when the protocol solution to the envy-free problem for n = 3
was found by John L. Selfridge, and rediscovered independently by John H.
Conway. These solutions also involved trimming and an initial allocation of only
part of the cake; they were widely disseminated by R. K. Guy and others, and
eventually reported by Gardner [15], Woodall [32], Stromquist [27], and Austin [1].
The moving-knife solution of Stromquist [27] was found two decades later, as was a
scheme due to Levmore and Cook [19], which can be recast as quite a different
moving-knife solution to the envy-free problem when n = 3. Still other envy-free
moving-knife schemes for three people [7] and, more recently, four people [8] have
been discovered and are summarized in [6].

The extension of the Selfridge-Conway protocol to the case of even four people
has remained an open, and much-commented upon, problem. See, for example,
Gardner [15], Rebman [24], Stromquist [27], Woodall [31], [32], Bennett et al [3],
Webb [29], Hill [16], [17], and Olivastro [22]. In what follows, we solve this problem
by producing an envy-free protocol for arbitrary n.

We have chosen a uniform presentation of four protocols that highlights the
evolution of two important ideas—namely, trimming, and the use of sequences of
partial allocations. Historically, these four protocols arose over a period of 50 years
and nicely illustrate how ideas in mathematics are built, one upon another. The
protocols we present are:

The proportional protocol for n = 3 (Steinhaus).

The proportional protocol for arbitrary n (Banach-Knaster).
The envy-free protocol for n = 3 (Selfridge, Conway).

The envy-free protocol for arbitrary n.

bl ol
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Before turning to the protocols themselves, we must acknowledge the help of
several people. Our interest in fair division was sparked by Olivastro [22]. Valuable
mathematical contributions were made by William Zwicker and Fred Galvin.
Indeed, the present version of our envy-free protocol owes much to the reworking
of an earlier version by Galvin. ‘

Specific observations and comments by David Gale, Sergiu Hart, Theodore Hill,
Walter Stromquist, William Webb, and Douglas Woodall also proved helpful. In
addition, we have benefited from conversations and correspondence with the
following people: Ethan Akin, Julius Barbanel, John Conway, Morton Davis, Karl
Dunz, Shimon Even, A. M. Fink, Peter Fishburn, Martin Gardner, Richard Guy,
D. Marc Kilgour, Peter Landweber, Jerzy Legut, Herve Moulin, Dominic
Olivastro, Barry O’Neill, Philip Reynolds, William Thomson, Hal Varian, Charles
Wilson, and H. Peyton Young.

The first protocol we present is a generalization of cut-and-choose to a propor-
tional protocol for three people. This is the one found by Steinhaus during World
War II.

The Proportional Protocol for n = 3
(Steinhaus, circa 1943)

Step 1. Player 1 cuts the cake into 3 pieces (that he considers to be the same
size).

Step 2. Player 2 is given the choice of either passing, i.e., doing nothing (which
he does if he thinks 2 or more of the pieces are of size at least 1/3), or
not passing and labeling 2 of the pieces (that he thinks are of size
strictly less than 1/3) as “bad.”

Step 3. If Player 2 passed in step 2, then Players 3, 2, and 1, in that order,
choose a piece (that they consider to be of size at least 1/3).

Aside. In this case, each player receives a piece of size at least 1/3 in his own
measure. This is true of: Player 3, because he chooses first; Player 2,
because he thinks either 2 or 3 pieces are that large, and so at least
one of them will still be available after Player 3 chooses his piece; and
Player 1, because he made all 3 pieces of size 1/3.

Step 4. If Player 2 did not pass at Step 2, then Player 3 is given the same two
options that Player 2 had at Step 2. He ignores Player 2’s labels.

Step 5. If Player 3 passed in Step 4, then Players 2, 3, and 1, in that order,
choose a piece (that they consider to be of size at least 1/3).

Aside. In this case, as before, each player receives a piece of size at least 1/3
in his own measure.

Step 6. If Player 3 did not pass at Step 4, then Player 1 is required to take a
piece that both Player 2 and Player 3 labelled as “bad.”

Aside. Note first that there certainly must be such a piece. At this point,
Player 1 has received a piece that he thinks is of size exactly 1/3,
which both Player 1 and Player 2 think is “bad,” i.e., of size strictly
less than 1/3.

Step 7. The other two pieces are reassembled, and Player 2 cuts the resulting
piece into two pieces (that he considers to be the same size).

Step 8. Player 3 chooses one of the two pieces (that he considers to be at least
tied for largest).

Step 9. Player 2 is given the remaining piece.

Aside. This is just cut-and-choose between Players 2 and 3, which ends the
protocol.
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The second protocol we present followed quickly on the heels of the first. It is
the Banach-Knaster protocol, offered in response to Steinhaus’ question of whether
his result could be extended from 3 to n people. Note here the introduction of the
idea of trimming, which will be further exploited in both of the upcoming envy-free

protocols.

Step 1.
Step 2.

Step 3.

Aside.

Step 4.

Aside.

Step 5.

Aside.

Step 6.

Aside

Proportional Protocol for Arbitrary n
(Banach-Knaster, circa 1944)

Player 1 cuts a piece P, (of size 1/n) from the cake.

Player 2 is given the choice of either passing (which he does if he
thinks P, is of size less than 1/n), or trimming a piece from P; to
create a smaller piece (that he thinks is of size exactly 1/n). The piece
P, now perhaps trimmed, is renamed P,. The trimmings are set aside.
For 3 <i < n, Player i takes the piece P,_, and proceeds exactly as
Player 2 did in Step 2, with the resulting piece now called P..

For 1 <i < n, Player i thinks that P, is of size less than or equal to
1/n. We also have that P, > --- D P,. Thus, every player thinks P,
is of size at most 1/n.

The last player to trim the piece, or Player 1 if no one trimmed it, is
given P,.
The player receiving P, thinks it is of size exactly 1/n.

The trimmings are reassembled, and Steps 1-4 are repeated for the
remainder of the cake, and with the remaining n — 1 players in place
of the original n players.

The player who gets a piece at this second stage is getting exactly
1/(n — 1) of the remainder of the cake; he, and everyone else, thinks
this remainder is of size at least (n — 1) /n. Hence, he thinks his piece
is of size at least 1/n.

Step 5 is iterated until there are only 2 players left. The last 2 players
use cut-and-choose.

As before, each player receives a piece that he thinks is of size at least
1/n.

This ends the protocol.

The next protocol we present is the Selfridge-Conway envy-free protocol for the
case n = 3. (There are slight differences in the presentations of Selfridge and
Conway; we follow the latter.) This protocol involves an elegant combination of the
trimming idea introduced by Banach-Knaster and the basic framework that Stein-
haus used. It also introduces the important notion of one player’s having an
“irrevocable advantage” over another player, following a partial allocation.

Step 1.

Step 2.

1995]

Envy-Free Protocol for n = 3
(Selfridge, Conway, circa 1960)

Player 1 cuts the cake into 3 pieces (that he considers to be the same
size).

Player 2 is given the choice of either passing (which he does if he
thinks two or more pieces are tied for largest), or trimming a piece
from (the largest) one of the three pieces (to create a tie for largest). If
Player 2 trimmed a piece, then the trimmings are named L, for
“leftover,” and set aside.
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Step 3. Players 3, 2, and 1, in that order, choose a piece (that they consider to
be at least tied for largest) from among the 3 pieces, one of which may
have been trimmed in Step 2. If Player 2 did not pass in Step 2, then
he is required to choose the piece he trimmed if Player 3 did not.

Aside. Notice that only part of the cake has been allocated. This yields a
partition {X,, X,, X3, L} of the cake such that {X, X,, X3} is an
envy-free partial allocation. The lack of envy is true of: Player 3,
because he chooses first; Player 2, because he made at least two pieces
tied for largest, and so at least one of them will still be available after
Player 3 chooses his piece; and Player 1, because he made all three
pieces of size 1/3, and the trimmed one has definitely been taken by
either Player 3 or Player 2.

Step 4. If Player 2 passed at Step 2, we are done. Otherwise, either Player 2 or
Player 3 received the trimmed piece, and the other received an
untrimmed piece. Whichever player received the untrimmed piece
now divides L into 3 pieces (that he considers to be the same size).
Call this player the “cutter” and the other the “non-cutter.”

Aside. We will refer to Player 1 as having an irrevocable advantage over the
non-cutter. The point is that, since the non-cutter received the trimmed
piece, Player 1 will not envy the non-cutter, regardless of how L is
later divided among the three.

Step 5. The three pieces into which L is divided are now chosen by the
players in the order: non-cutter first; Player 1 second; cutter third.
(Each chooses a piece at least tied for largest among those available to
him when it is his turn to choose.)

Aside. At this point, the entire cake has been allocated. Since the non-cutter
chooses his piece of L first, he experiences no envy. Player 1 does not
envy the non-cutter, since he had an irrevocable advantage over him,
and Player 1 does not envy the cutter, because he is choosing his piece
of L before the cutter does. Finally, the cutter experiences no envy
since he divided L into three equal pieces.

This ends the protocol.

The final protocol we present is our envy-free protocol for an arbitrary number
of players. This result was announced in [9, 12, 13, 23]. A brief discussion of some
important differences between this protocol and the three earlier ones, and a
couple of important open questions, follow.

The central feature of our envy-free protocol, like that for the n = 3 protocol, is
that players trim pieces of the cake to create ties, rendering them indifferent
among these pieces. When n > 3, however, one needs to start the trimming and
choosing process—leading to an envy-free partial allocation—with rmore pieces
than there are players.

As an informal illustration of how to achieve an envy-free partial allocation,
suppose there are four people. Have Player 1 cut the cake into 5 equal pieces.
Player 2 then trims 2 pieces, creating a 3-way tie for largest. Player 3 then trims 1
piece, creating a 2-way tie for largest. The players now choose in the order: Player
4, Player 3, Player 2, Player 1, with the middle two players required to take a piece
they trimmed if one is available. Clearly, each player thinks his piece is at least tied
for largest. The burden of our demonstration of the n-person envy-free protocol is
to show that a full allocation of the entire cake can be accomplished in a finite
number of steps.
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For simplicity, we will present only the n = 4 version of the envy-free protocol.
The extension to arbitrary n is fairly straightforward and left to the reader. In
outline form, the protocol goes as follows:

One player (chosen here to be Player 2 for later notational simplicity), cuts the
cake into 4 equal pieces, hands these out, and asks if anyone objects. If, say, Player
1 objects, then Players 1 and 2 (alone) go through several steps which yield six sets
(the Ys and Zs in Step 7 below) to be used as a starting partition (in place of the
five equal pieces) for the kind of trim-and-choose sequence among all four players
that we illustrated two paragraphs earlier. This trim-and-choose sequence is
repeated again and again until we arrive at a partial allocation in which Player 1
has an irrevocable advantage over Player 2 (the “aside” after Step 15 below). From
this point on, we never have to worry about Player 1’s objecting because of envy for
Player 2. Repeating this at most once for each pair of players results in an
envy-free allocation of the entire cake after finitely many steps.

Envy-Free Protocol for Arbitrary n
(the n = 4 version)
(1992)

Step 1. Player 2 cuts the cake into 4 pieces (that he considers to be the same
size), keeps one piece, and hands one piece to each player.

Step 2. Each of the other three players is asked whether or not he objects to
this allocation. (A player objects iff he envies some other player.)

Step 3. If no one objects, then each keeps the piece he was given in Step 1,
and we are done.

Step 4. Otherwise, we choose the smallest i so that Player i objected. For
notational simplicity, assume i = 1. Player 1 now chooses a piece
originally given to some other player (whom he envied) and calls that
piece A. The piece originally given to Player 1 is called B.

Aside. Once we have 4 and B, the other two pieces in the allocation from
Step 1 are reassembled. That part of the cake will be allocated later.
Note that Player 1 thinks A is larger than B. Player 2 thinks 4 and
B are the same size.

Step 5. Player 1 now names a positive integer r > 10 (chosen so that, for any
partition of A4 into r sets, Player 1 will prefer 4, even with the 7
smallest—according to Player 1—pieces in the partition of A4 re-
moved, to B).

Aside. Player 1 can easily choose such an r. That is, the union of the 7
smallest pieces is certainly no larger than 7 times the average size of
all r pieces. Hence, Player 1 simply chooses r large enough so that
Tu(A)/r < u(A) — u(B), where p is his measure.

Step 6. Player 2 now partitions A into exactly r sets (that he considers to be
the same size), and does the same to B.

Step 7. Player 1 chooses (the smallest) 3 sets from the partition of B and
names these Z,, Z,, Z,. He also chooses either (the largest) 3 sets
from the partition of A (if he thinks these are all strictly larger than
all the Zs), and trims at most 2 of these (to the size of the smallest
among the three), or he partitions (the largest) one of the sets in the
partition of A into 3 pieces (that he considers to be the same size). In
either case, he names these Y,,Y,,Y;.

Aside.  Player 1’s strategy in Step 7 guarantees that he will think all three Ys
are the same size, and each strictly larger than all three Zs. This is
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true even if he chooses the second option.? Player 2 thinks all three
Zs are the same size, and each is at least as large as all three Ys.

Step 8. Player 3 takes the collection of 6 pieces, and either passes (if he
thinks there already is at least a 2-way tie for largest), or trims (the
largest) one of these (to the size of the next largest), thus creating at
least a 2-way tie for largest).

Step 9. Players 4, 3, 2, and 1, in that order, choose a piece from among the 6
Ys and Zs as modified in Step 8 (that they consider to be largest or
tied for largest), with Player 3 required to take the piece he trimmed
if it is available. Player 2 must choose Z,, Z,, or Z,. Player 1 must
choose Y;, Y,, or Y.

Aside. This yields a partition {X,, X,, X3, X,, L;} of the cake such that
{X,, X,, X5, X,} is an envy-free partial allocation, and L, is the
leftover piece. Moreover, Player 1 thinks his piece X, is strictly larger
—say by e—than Player 2’s piece X,.

Step 10. Player 1 names a positive integer s (chosen so that [4u(L,)/5)F <&,
where w, is Player 1’s measure).

Aside. The integer s specifies how many times the players will iterate the
basic trim-and-choose sequence to follow. Notice that if the rules
were instead to allow the iterations to continue until Player 1 said
“stop” (which he could strategically do at the point at which he
thinks the leftover crumb is smaller than the advantage he has over
Player 2), then there is no guarantee that a strategically misguided
Player 1 would not keep the game going forever.

Step 11. Player 1 cuts L, into 5 pieces (that he considers to be the same size).

Step 12. Player 2 takes the collection of 5 pieces, selects (the largest) 3 pieces,
and trims (the largest) 2 or fewer of these (to the size of the smallest,
thereby creating at least a 3-way tie for largest).

Step 13. Player 3 takes the collection of 5 pieces, perhaps trimmed in step 12,
selects (the largest) two, and trims, if he wants to, (the largest) one of
these (to the size of the smallest, thus creating at least a 2-way tie for
largest).

Step 14. Players 4, 3, 2, and 1, in that order, choose a piece (that they consider

2The proof runs as follows: We are assuming that both 4 and B have been partitioned into r
pieces, and that B is not only smaller than A but smaller even than A with the smallest 7 pieces of A’s
partition removed. Arrange the sets in both partitions from largest to smallest as A4, 4,,..., 4, and
B, B,,...,B,. Let u denote Player 1’s measure, and suppose, for contradiction, that both of the
following hold:

1. u(B,_,) = u(A;), which holds if A;, A,, and A are not all strictly larger than B,_,, B
and B,.

2. w(B,_,) = u(A;)/3, which holds if A, cannot be partitioned into 3 sets all larger than B,_,,
B,_,, and B,.

It follows from 1 that:

3. u(B;U -+ UB,_3) > u(A3 U -+ UA,_,), since there are r — 9 sets in each union, and the
smallest one of the Bs is at least as large as the largest one of the As.

It follows from 2 that:

4. w(B; U B, U B3] U[B, UBs U Bg)) = u(A4, U A,),
since each of the blocks of 3 Bs is larger than each of the As.

But 3 and 4 clearly demonstrate that:

5.u(B) = (A4, U - UA,_).

This is the desired contradiction since the set on the right is 4 with the smallest 7 pieces of its partition
removed.

r—0
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to be largest or tied for largest), with Players 3 and 2 required to take
a piece they trimmed if one is available.

Step 15. Steps 11-14 are repeated s — 1 more times, with each application of
these four steps applied to the leftover piece from the preceding
application.

Aside.  This yields a partition {X], X3, X3,’X}, L,} of the cake such that
{X1, X3, X3, X,} is an envy-free partial allocation, and such that
Player 1 thinks that Xj is larger than X; U L,. We now declare
that Player 1 has an irrevocable advantage over Player 2, and we
begin creation of a subset of {1,2,3,4} X {1,2,3,4}, which we call
“ 2o/ for “irrevocable advantage,” by putting (1,2) € L.

Step 16. Player 2 cuts L, into 12 pieces (that he considers to be the same
size).

Step 17. Each of the other players declares himself to be of type A (f he
agrees all the pieces are the same size), or type D (if he disagrees).
Player 2 is declared to be of type A.

Step 18. If D X A ¢ £, then we give the 12 pieces to the players in A, with
each of them receiving the same number of pieces. In this case, we
are done.

Step 19. Otherwise, we choose the lexicographically least pair (i,j) from
D X A that is not in £, and we return to Step 4 with Player { in
the role of Player 1, Player j in the role of Player 2, and L, in place
of the cake.

Step 20. Steps 5-18 are repeated.

Aside. Each time we pass through Step 15, we add an ordered pair to 2.
Notice that since D XA c{1,2,3,4} x{1,2,3,4}, and L& C
{1,2,3,4} x {1,2, 3,4}, we must have D X A c £ after at most 16
iterations. At this point, we conclude at Step 18 with an envy-free
division of the entire cake.

This ends the protocol.

There is an important way (pointed out to us by several people) that the
envy-free protocol for even n = 4 differs from the envy-free protocol for n = 3:
For n = 3, the number of cuts needed is at most 5, regardless of what the
measures are. For n = 4, the number of cuts needed can be made arbitrarily large
by a suitable choice of the four measures (although the moving-knife solution [8]
for the four-person problem gives a bounded number of cuts). This raises:

Question 1. Is there a bounded envy-free protocol for n = 4 or n > 4?

There is another slightly more subtle (and perhaps related) way in which the
envy-free protocol differs from the others: The three earlier ones also work in the
context of what are called “CD preference relations” in [2]. (A CD preference
relation is a complete, reflexive, transitive binary relation that satisfies a partition-
ing postulate, a trimming postulate, and a weak additivity postulate.) The envy-free
protocol, on the other hand, requires what is call an “Archimedian CD preference
relation” in [2]. The main result in [2] is the fact that a CD preference relation is
induced by a finitely additive measure in the obvious way iff it is Archimedian.
This raises:

Question 2. Is there an envy-free protocol for n = 4 or n > 4 that works in the
context of non-Archimedian preference relations?

It turns out that techniques similar to those used in the n-person envy-free
protocol can also be used to solve the “chores” problem [15], wherein each player
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wants to minimize the amount of cake he or she receives. This and related
questions (e.g., the Pareto-optimality of allocations) are discussed in [6].
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