
MECHANISM 
DESIGN
JOHN P DICKERSON & MARINA KNITTEL

Lecture #2 – 01/26/2022

CMSC498T
Mondays & Wednesdays
2:00pm – 3:15pm



ANNOUNCEMENTS
Do we want a Slack / Discord?  Stick with Piazza …?

We will post our first Pass/Fail quiz on Monday
• ELMS

• Will be open for a week (Monday -> Monday, most of the time)

• Pass/Fail, so no need to worry about getting a few wrong
• Can retake
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W
rapping up from

 
last lecture …
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EXAMPLE: KIDNEY 
TRANSPLANTATION
US waitlist: a bit under 100,000

• 35,000 – 40,000 added per year
~4,000 people died while waiting
~15,000 people received a kidney
from the deceased donor waitlist
6,500+ people received a kidney from a living donor

• Some through kidney exchanges!
• This talk: experience with UNOS national kidney exchange
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[Roth et al. 2004]
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EXAMPLE: DECEASED-DONOR 
ALLOCATION
Online bipartite matching problem:
• Set of patients is known (roughly) in advance
• Organs arrive and must be dispatched quickly
Constraints:
• Locality: organs only stay good for 24 hours
• Blood type, tissue type, etc.
Who gets the organ?  Prioritization based on:
• Age?
• QALY maximization?
• Quality of match?
• Time on the waiting list?
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(2- and 3-cycles, all surgeries performed simultaneously)

EXAMPLE: KIDNEY EXCHANGE
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NON-DIRECTED DONORS & 
CHAINS

Not executed simultaneously, so no length cap based on logistic concerns …
… but in practice edges fail & chains execute over many years, so some finite cap is 
used while planning a single match run.
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forward

[Rees et al. 2009]
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THE CLEARING PROBLEM

The standard clearing problem is to find the “best” disjoint set of cycles of length at 
most L, and chains

• Typically, 2 ≤ L ≤ 5 for kidneys (e.g., L=3 at UNOS)
• NP-hard (for L>2) in theory, really hard in practice

Dickerson - CMSC498T

[Abraham et al. 07, Biro et al. 09]

[Abraham et al. 07, Constantino et al. 13, 
Glorie et al. 14, Klimentova et al. 14, 
Anderson et al. 15, Manlove & O’Malley 15, 
Plaut et al. 16, Dickerson et al. 16, Mak-Hau 
17, McElfresh et al. 19, ...]
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Lots of 
moving 
parts & 
competing 
wants

Concerns of fairness:

• Race
• Socio-economic status
• Age
• Geographic location
• Access to information
• Health characteristics (e.g., 

blood type, HLA)
• Having had children
• …

Distribution drift:

Supply & demand shifts:
• Demographic (aging 

population, racial shift)
• Obesity, alcohol, …

Shocks to the system:
• 30% living donation drop
• 21% deceased donation 

drop – COVID

[ChronicleHerald, 2021]
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Legal landscape, social 
norms, international 
exchange, money, insurance, 
NP-hardness, noisy data, 
incentive problems, dynamics, 
competition, …
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EXAMPLE: KIDNEY 
EXCHANGE

What is the “best” matching objective?
• Maximize matches right now or over time?

• Maximize transplants or matches?

• Prioritization schemes (i.e. fairness)?
• Modeling choices?

• Incentives? Ethics? Legality?

Can we design a mechanism that performs well in practice, is 
computationally tractable, and is understandable by humans?
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TECHNIQUES WE’LL USE
(NEXT THREE LECTURES WILL COVER THESE, 

IN THE CONTEXT OF MECHANISM DESIGN)
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COMBINATORIAL 
OPTIMIZATION
Combinatorial optimization lets us select the “best element” from a set of elements.
Some PTIME problems:
• Some forms of matching
• 2-player zero-sum Nash
• Compact LPs
Some PPAD- or NP-hard problems:
• More complex forms of matching
• Many equilibrium computations
Some > NP-hard problems:
• Randomizing over a set of all feasible X, where all feasible X must be enumerated 

(#P-complete)
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C.O. FOR KIDNEY EXCHANGE:
THE EDGE FORMULATION
Binary variable xij for each edge from i to j

Maximize
u(M) = Σ wij xij

Subject to
Σj xij = Σj xji for each vertex i
Σj xij ≤ 1 for each vertex i

Σ1≤k≤L xi(k)i(k+1) ≤ L-1 for paths i(1)…i(L+1)

(no path of length L that doesn’t end where it started – cycle cap)
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[Abraham et al. 2007]

Flow constraint
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C.O. FOR KIDNEY EXCHANGE:
THE CYCLE FORMULATION
Binary variable xc for each feasible cycle or chain c

Maximize
u(M) = Σ wc xc

Subject to
Σc : i in c xc ≤ 1 for each vertex i

14

[Roth et al. 2004, 2005,
Abraham et al. 2007]
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C.O. FOR KIDNEY EXCHANGE: 
COMPARISON
Tradeoffs in number of variables, constraints

• IP #1: O(|E|L) constraints vs. O(|V|) for IP #2
• IP #1: O(|V|2) variables vs. O(|V|L) for IP #2

IP #2’s relaxation is weakly tighter than #1’s.  Quick intuition in one direction: 
• Take a length L+1 cycle.  #2’s LP relaxation is 0.
• #1’s LP relaxation is (L+1)/2   – with ½ on each edge

Recent work focuses on balancing tight LP relaxations and model size [Constantino et 
al. 2013, Glorie et al. 2014, Klimentova et al. 2014, Alvelos et al. 2015, Anderson et al. 2015, Mak-Hau 2015, 
Manlove&O’Malley 2015, Plaut et al. 2016, …]:

• We will discuss (9/29) new compact formulations, some with tightest relaxations 
known, all amenable to failure-aware matching
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GAME THEORY & MECHANISM 
DESIGN
We assume participants in our mechanisms are:
• Selfish utility maximizers

• Rational (typically – sometimes relaxed)

Game theory & M.D. give us the language to describe desirable properties of 
mechanisms:
• Incentive compatibility
• Individual rationality

• Efficiency
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MACHINE LEARNING
Predicting supply and demand
Computing optimal matching/allocation policies:
• MDPs
• RL
• POMDPs, if you’re feeling brave/masochistic

Aside: recent work looks at fairness and discrimination in machine learning – could be 
an interesting project, we will discuss in much greater depth later in the semester.
• “… when a search was performed on a name that was “racially associated” with the black 

community, the results were much more likely to be accompanied by an ad suggesting 
that the person had a criminal record—regardless of whether or not they did.”
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RANDOM GRAPH THEORY
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NEXT THIS CLASS:
GAME THEORY PRIMER

Thanks to: AGT book, Blum (AB), Conitzer (VC), Sandholm (TS), Osborne&Rubinstein (OR) 19Dickerson - CMSC498T



WHAT IS GAME THEORY?
“… the study of mathematical models of conflict and cooperation between intelligent 
rational decision-makers.”

“Intelligent rational decision-makers” = agents
• Have individual preferences specified by utility functions
• Can take different actions (or randomize over them)

Utility of agents usually, but not always, depends on the 
actions of other agents
• What’s best for me is a function of what’s best for you …

• … which is a function of what’s best for me ...
• ... which is a function of what’s best for you ...

• ... which is …
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WHAT IS “UTILITY” …?
“ … utility is a measure of preferences over some set of goods and services.”
Formally:
• Let O be the set of outcomes

(e.g., O = {{apple,orange}, {apple}, {orange}, { }})
• A utility function u : O à Â ranks outcomes, and represents a preference relation !

over the set of outcomes O

Example:
• u({apple,orange}) = 5

• u({apple}) = u({orange}) = 3
• u({ }) = 0     à { } !"{apple} ! {orange} ! {apple,orange}
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HOW DO WE MEASURE 
“UTILITY” …?
u({apple,orange}) = 5 
• 5 dollars?  5 clams?  5 days to live?
• Standard: 5 “utils” – it doesn’t typically matter
• Agent’s behavior under u(o) is typically the same as under u’(o) = a + b*u(o)

u({apple}) = 3 < 5 = u({apple,orange})
• Cardinal utility: 3 < 5

• (We’ll see this in security games and auctions)
• Ordinal utility: {apple,orange} ! {apple}

• Doesn’t encode strength of a preference, just ordering
• (We’ll see more of this in social choice)
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RISK ATTITUDES
Which would you prefer?

• A lottery ticket that pays out $10 with probability .5 and $0 otherwise, or
• A lottery ticket that pays out $3 with probability 1

How about:
• A lottery ticket that pays out $100,000,000 with probability .5 and $0 otherwise, or
• A lottery ticket that pays out $30,000,000 with probability 1

Usually, people do not simply go by expected value

VC 23Dickerson - CMSC498T



RISK ATTITUDES – EXPECTED 
VALUE
An agent is risk-neutral if she only cares about the expected value of the lottery 
ticket
An agent is risk-averse if she always prefers the expected value of the lottery 
ticket to the lottery ticket

• Most people are like this
An agent is risk-seeking if she always prefers the lottery ticket to the expected 
value of the lottery ticket
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DECREASING MARGINAL 
UTILITY
Typically, at some point, having an extra dollar does not make people much 
happier (decreasing marginal utility)

utility

money$200 $1500 $5000

buy a bike (utility = 1)

buy a car (utility = 2)

buy a nicer car (utility = 3)

25

“Typically”
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MAXIMIZING EXPECTED 
UTILITY

Lottery 1: get $1500 with probability 1 à gives expected utility 2
Lottery 2: get $5000 with probability .4, $200 otherwise

• à expected utility .4*3 + .6*1 = 1.8
E$[Lottery 2] = .4*$5000 + .6*$200 = $2120 > $1500 = E$[Lottery 1]
So: maximizing expected utility is consistent with risk aversion (assuming decreasing marginal utility)

26

utility

money$200 $1500 $5000

buy a bike (utility = 1)

buy a car (utility = 2)

buy a nicer car (utility = 3)
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RISK ATTITUDES ASSUMING 
EXPECTED UTILITY MAXIMIZING

Green has decreasing marginal utility → risk-averse
Blue has constant marginal utility → risk-neutral
Red has increasing marginal utility → risk-seeking
Grey’s marginal utility is sometimes increasing, sometimes decreasing → neither 
risk-averse (everywhere) nor risk-seeking (everywhere)

27

utility

money

VC
Dickerson - CMSC498T



STRATEGIES & UTILITY
A strategy si for agent i is a mapping of history/the agent’s knowledge of the world 
to actions
• Pure: “perform action x with probability 1”
• Randomized: “do x with prob 0.2 and y with prob 0.8”
A strategy set is the set of strategies available to agent i
• Can be infinite (infinite number of actions, randomization)
A strategy profile is an instantiation (s1, s2, s3, …, sN)
Abuse of notation: we’ll use s-i to refer to all strategies played other than that by 
agent i
• i = 2, then s-i = (s1, s3, ..., sN)
Utils awarded after game is played: ui = ui(si, s-i)
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NATURE
Agents act strategically in the face of what they
believe other agents will do, who act based on …
There may be other sources of non-strategic randomness
Included (when needed) in our models as a unique agent called nature, which 
acts:
• Probabilistically
• Without reasoning about what other agents will do
(Sometimes referred to as agent i = 0, often just nature.)
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GAME REPRESENTATIONS

0, 0 -1, 1 1, -1
1, -1 0, 0 -1, 1
-1, 1 1, -1 0, 0

Row player
aka. player 1

chooses a row

Column player aka. 
player 2

(simultaneously) 
chooses a column

A row or column is 
called an action or 

(pure) strategy
Row player’s utility is always listed first, column player’s second

Zero-sum game: the utilities in each entry sum to 0 (or a constant)
Three-player game would be a 3D table with 3 utilities per entry, etc.VC 30



GAME REPRESENTATIONS

Extensive form 
(aka tree form)

player 1

1, 2

3, 4

player 2Up

Down

Left

Right

5, 6

7, 8

player 2

Left

Right

Matrix form 
(aka normal form
aka strategic form)

player 1’s
strategy

player 2’s strategy

1, 2Up

Down

Left,
Left

Left,
Right

3, 4

5, 6 7, 8

Right,
Left

Right,
Right

3, 41, 2

5, 6 7, 8

Potential combinatorial explosion
TS 31



SEINFELD’S ROCK-PAPER-
SCISSORS

0, 0 1, -1 1, -1
-1, 1 0, 0 -1, 1
-1, 1 1, -1 0, 0

MICKEY: All right, rock beats paper!
(Mickey smacks Kramer's hand for losing)
KRAMER: I thought paper covered rock.

MICKEY: Nah, rock flies right through paper.
KRAMER: What beats rock?

MICKEY: (looks at hand) Nothing beats rock.

VC Dickerson - CMSC498T 32



DOMINANCE
Player i’s strategy si strictly dominates si’ if 

• for any s-i, ui(si , s-i) > ui(si’, s-i) 
si weakly dominates si’ if 

• for any s-i, ui(si , s-i) ≥ ui(si’, s-i); and
• for some s-i, ui(si , s-i) > ui(si’, s-i)

strict dominance

weak dominance

VC Dickerson - CMSC498T 33

0, 0 1, -1 1, -1
-1, 1 0, 0 -1, 1
-1, 1 1, -1 0, 0



MIXED STRATEGIES & 
DOMINANCE
Mixed strategy for player i = probability distribution over player i’s (pure) 
strategies

E.g.,1/3             , 1/3         , 1/3

Example of dominance 
by a mixed strategy:

3, 0 0, 0
0, 0 3, 0
1, 0 1, 0

1/2

1/2
Usage: 

σi denotes a 
mixed strategy, 

si denotes a pure 
strategy

VC

?????????
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BEST-RESPONSE STRATEGIES
Suppose you know your opponent’s mixed strategy

• E.g., your opponent plays rock 50% of the time and scissors 50%
What is the best strategy for you to play?
Rock gives .5*0 + .5*1 = .5
Paper gives .5*1 + .5*(-1) = 0
Scissors gives .5*(-1) + .5*0 = -.5
So the best response to this opponent strategy is to (always) play rock
There is always some pure strategy that is a best response

• Suppose you have a mixed strategy that is a best response; then every one of the 
pure strategies that that mixed strategy places positive probability on must also be a 
best response

VC Dickerson - CMSC498T 35



DOMINANT STRATEGY 
EQUILIBRIA (DSE)
Best response  si*:  for all si’,  ui(si*,s-i) ≥ ui(si’,s-i)
Dominant strategy  si*:   si* is a best response for all s-i

• Does not always exist
• Inferior strategies are called “dominated”

DSE is a strategy profile where each agent has picked its dominant strategy
• Requires no counterspeculation – just enumeration

36

cooperate

cooperate defect

defect

3, 3 0, 5

5, 0 1, 1

Pareto optimal?

Social welfare
maximizing?
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ZERO-SUM GAMES (2-P)
Two-player zero-sum games are a special – purely competitive – case of general 
games
• Everything I win you lose, and vice versa
Example: heads-up poker (with no rake)
A minimax-optimal strategy is a strategy that 
maximizes the expected minimum gain
• Guarantees the “best minimum” in expectation, no matter which strategy your 

opponent selects
Theorem [von Neumann ’28] – “Minimax Theorem”:
• Every 2-P zero-sum game has a unique value V
• Maximin utility: maxσi mins-i ui(σi, s-i) (= - minσi maxs-i u-i(σi, s-i))
• Minimax utility: minσ-imaxsiui(si, σ-i) (= - maxσ-iminsiu-i(si, σ-i))
• Theorem: V = maxσi mins-i ui(σi, s-i) = minσ-imaxsiui(si, σ-i)

37

+1, -1 -2, +2

+2, -2 0, 0
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GENERAL-SUM GAMES (2-P)
You could still play a minimax strategy in general-sum games
• i.e., pretend that the opponent is only trying to hurt you

But this is not rational:

38

• If Col were trying to hurt Row, Col would play Left, so Row should play Down
• In reality, Col will play Right (strictly dominant), so Row should play Up
• Is there a better generalization of minimax strategies in zero-sum games to 

general-sum games?

Row

Col

VC

0, 0 3, 1
1, 0 2, 1
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GENERAL-SUM GAMES: NASH 
EQUILIBRIA (2-P)
Nash equilibrium: a pair of strategies that are stable
Stable: neither agent has incentive to deviate from his or her selected strategy on 
their own

Theorem [Nash 1950]: any general-sum game has at least one Nash equilibrium
• Might require mixed strategies (randomization)
Corollary for 2-P zero-sum games: Minimax Theorem!
• WLOG pick one of the NE, let V = value of Row player
• Assumed NE, so neither player can do better (even fully knowing the other player’s 

mixed strategy!) à minimax-opt

39

2, 2 -1, -1
-1, -1 2, 2

Row

Col

????????
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EXAMPLE: CHICKEN

40

Straight

D

Dodge

S

• Thankfully, (D, S) and (S, D) are Nash equilibria
– They are pure-strategy Nash equilibria: nobody randomizes
– They are also strict Nash equilibria: changing your strategy makes you strictly worse off

• No other pure-strategy Nash equilibria

VC

D
S

D S
???????? ????????

0, 0 -1, 1
1, -1 -5, -5
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VC

CHICKEN
Is there an NE that uses mixed strategies?  

• Say, where player 1 uses a mixed strategy?

Note: if a mixed strategy is a best response, then all of the pure strategies that it 
randomizes over must also be best responses

So we need to make player 1 indifferent between D and S
• Player 1’s utility for playing D = -pc

S
• Player 1’s utility for playing S = pc

D - 5pc
S = 1 - 6pc

S
So we need -pc

S = 1 - 6pc
S which means pc

S = 1/5
• Then, player 2 needs to be indifferent as well

Mixed-strategy Nash equilibrium: ((4/5 D, 1/5 S), (4/5 D, 1/5 S))
– People may die!  Expected utility -1/5 for each player

41

D
S

D S
0, 0 -1, 1

1, -1 -5, -5
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CRITICISMS OF NASH 
EQUILIBRIUM
Not unique in all games (like the example on Slide 31)
• Approaches for addressing this problem

• Refinements (=strengthenings) of the equilibrium concept
• Eliminate weakly dominated strategies first (IEDS)
• Choose the Nash equilibrium with highest welfare
• Subgame perfection … [see AGT book on course page]

• Mediation, communication, convention, learning, …
Collusions amongst agents not handled well
• “No agent wants to deviate on her own”
Can be disastrous to “partially” play an NE
• (More) people may die!
• Correlated equilibria – strategies selected by an outsider, but the strategies must be 

stable (see Chp 2.7 of AGT)
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CORRELATED EQUILIBRIUM
Suppose there is a trustworthy mediator who has offered to help out the players in the 
game

The mediator chooses a profile of pure strategies, perhaps randomly, then tells each 
player what her strategy is in the profile (but not what the other players’ strategies are)

A correlated equilibrium is a distribution over pure-strategy profiles so that every 
player wants to follow the recommendation of the mediator (if she assumes that the 
others do so as well)

Every Nash equilibrium is also a correlated equilibrium
• Corresponds to mediator choosing players’ recommendations independently

… but not vice versa

(Note: there are more general definitions of correlated equilibrium, but it can be shown 
that they do not allow you to do anything more than this definition.)
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EXAMPLE: CORRELATED 
EQUILIBRIUM FOR CHICKEN

44

0, 0 -1, 1

1, -1 -5, -5

20%

40%

40%

0%

D

S

D S
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C.E. FOR CHICKEN
Why is this a correlated equilibrium?

Suppose the mediator tells Row to Dodge
• From Row’s perspective, the conditional probability that Col was told to Dodge is 

20% / (20% + 40%) = 1/3
• So the expected utility of Dodging is (2/3)*(-1) = -2/3
• But the expected utility of Straight is (1/3)*1 + (2/3)*(-5) = -3
• So Row wants to follow the recommendation
If Row is told to go Straight, he knows that Col was told to Dodge, so again Row wants 
to follow the recommendation
Similar for Col

45

20%

40%

40%

0%

0, 0 -1, 1

1, -1 -5, -5
D
S

D S
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COMPLEXITY
Can compute minimax-optimal strategies in PTIME
Can compute 2-P zero-sum NE in PTIME
• (We’ll see this as an example during the convex optimization primer lecture next 

week.)
Can compute correlated equilibria in PTIME
Unknown if we can compute a 2-P general-sum NE in PTIME:
• Known: PPAD-complete (weaker than NP-c, and different)
• All known algorithms require worst-cast exponential time
Our first “meaty” lectures will cover security games, which try to find Stackelberg
equilibria:
• Varying complexity, will discuss during those lectures
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DOES NASH MODEL HUMAN 
BEHAVIOR?
Game: pick a number (let’s say, integer) in

{0, 1, 2, 3, …, 98, 99, 100}
Winner: person who picks number that is

closest to 2/3 of the average of all numbers
Example: if the average of all numbers is 54, your best 
answer would be 36 ( = 54 * 2/3) 

47

LIVE                             EXPERIMENT!
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PAUSE …
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DOES NASH MODEL HUMAN 
BEHAVIOR?
What’s the (Nash) equilibrium strategy?

“Level 0” humans: everyone picks randomly?  E[v] = 50, choose 50 * 2/3
“Level 1” humans: everyone picks 50 * 2/3, I’ll pick (50 * 2/3) * 2/3
“Level 2” humans: I’ll pick ((50 * 2/3) * 2/3) * 2/3 …
N.E.: fixed point, “Level infinity”, pick 0 or 1 depending on constraints
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DOES NASH MODEL 
HUMAN BEHAVIOR?

Any guesses on behavior …?
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NEXT CLASS:
MECHANISM DESIGN PRIMER
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