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WHAT’S USED IN MARKET DESIGN 
& RESOURCE ALLOCATION?
We want the best outcome from a set of outcomes.
Convex optimization:
• Linear programming
• Quadratic programming
Nonconvex optimization:
• (Mixed) integer linear programming
• (Mixed) integer quadratic programming
Incomplete heuristic & greedy methods

Care about maximization (social welfare, profit), minimization (regret, loss), or simple 
feasibility (does a stable matching with couples exist?)
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It’s just an optimization problem.
Blame this guy:
• George Dantzig (Maryland alumnus!)
• Focused on solving US military logistic

scheduling problems aka programs
Solving (un)constrained optimization problems is much older:
• Newton (e.g., Newton’s method for roots)
• Gauss (e.g., Gauss-Newton’s non-linear regression)
• Lagrange (e.g., Lagrange multipliers)

“PROGRAMMING?”
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GENERAL MODEL
General math program:

min/max  f(x)
subject to  gi(x) £ 0,     i = 1, ..., m

hj(x) = 0,    j = 1, ..., k
x Î X Ì Ân

f, gi, hj : Ân à Â

Linear programming: all of f, gi, hj are linear (affine) functions
Nonlinear programming: at least part of f, gi, hj is nonlinear
Integer programming: Feasible region constrained to integers
Convex, quadratic, etc …
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CONVEX FUNCTIONS
“A function is convex if the line segment between any two points on its 
graph lies above it.”
Formally, given function f and two points x, y:

Convex or non-convex?
•
•
•
•
•
•

f(�x+ (1� �)y)  �f(x) + (1� �)f(y) 8� 2 [0, 1]

aTx+ b

ex, e�x

kxk

xTQx, Q ⌫ 0

xTQx, Q indefinite

log x,
p
x
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CONVEX SETS
“A set is convex if, for every pair of points within the set, every point on 
the straight line segment that joins them is in the set.”
Formally, give a set S and two points x, y in S:

Convex or non-convex sets?
•

•

•

•

x 2 S,y 2 S ) �x+ (1� �)y 2 S

{X : X ⌫ 0}
{(x, t) : kxk  t}

{x : Ax = b}
Rn

+
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SO WHAT?
An optimization (minimization) problem with a convex objective function and a 
convex feasible region is solved via convex programming.
Lets us use tools from convex analysis
• Local minima are global minima
• The set of global mimina is convex
• There is a unique global minimum if strictly convex
Lets us make statements like gradient descent
converges to a global minimum (under some
assumptions w.r.t local Lipschitz and step size)
But let’s start even simpler …
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LINEAR PROGRAMS!
There are 3 main parts that forms an optimization problem:
• Decision variables represent the decision that can be made

• Objective function: Each optimization problem is trying to optimize 
(maximize/minimize) some goal such as costs, profits, revenue.

• Constraints: Set of real restricting parameters that are imposed in real life or by the 
structure of the problem. Example for constraints can be: 
• Limited budget for a project
• Limited manpower or resources
• Being limited to choose only one option out of many options (Assignment)
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LINEAR PROGRAMS
An “LP” is an optimization problem with a linear objective function and linear 
constraints.
• A line drawn between any two points x, y on a line is on the line à clearly 

convex
• Feasible region aka polytope also convex
General LP:

min/max  cTx
subject to  Ax £ b

x ≥ 0

Where c, A, b are known, and we are solving for x.
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FEASIBLE REGION
The feasible region is defined by the set of constraints of the problem, which is all 
the possible points that satisfy the all the constraints.
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LP: EXAMPLE
We make reproductions of two paintings:

Painting 1 sells for $30, painting 2 sells for $20

Painting 1 requires 4 units of blue, 1 green, 1 red
Painting 2 requires 2 blue, 2 green, 1 red

We have 16 units blue, 8 green, 5 red

11

maximize 30x + 20y
subject to

4x + 2y ≤ 16
x + 2y ≤ 8

x + y ≤ 5
x ≥ 0
y ≥ 0

VC

Objective ??????? Constraints ???????
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SOLVING THE LINEAR 
PROGRAM GRAPHICALLY
maximize 30x + 20y
subject to

4x + 2y ≤ 16
x + 2y ≤ 8
x + y ≤ 5
x ≥ 0
y ≥ 0

2

0

4

6

8

2 4 6 8

optimal solution: 
x=3, y=2

12
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LP EXAMPLE: SOLVING FOR 2-
P ZERO-SUM NASH
Recall:
• Mixed Nash Equilibrium always exists
• Even if I know your strategy, in equilibrium I don’t deviate
Given a payoff matrix A:

If Row announces strategy <x1, x2>, then Col gets expected payoffs:
E[“Morality”] = -3x1 + 2x2

E[“Tax-Cuts”] = 1x1 – 1x2

So Col will best respond with max(-3x1 + 2x2, 1x1 – 1x2) …

13

Morality Tax-Cuts
Economy +3, -3 -1, +1
Society -2, +2 +1, -1

[Example from Daskalakis]
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LP EXAMPLE: SOLVING FOR 2-P 
ZERO-SUM NASH
But if Col gets max(-3x1 + 2x2, 1x1 – 1x2), 
then Row gets -max(-3x1 + 2x2, 1x1 – 1x2) = min(…)
So, if Row must announce, she will choose the strategy:

<x1, x2> = arg max min(3x1 - 2x2, -1x1 + 1x2)
This is just an LP:

maximize z
such that 3x1 - 2x2 > z

-1x1 + 1x2 > z
x1 + x2 = 1
x1, x2 > 0

So Row player is guaranteed to get at least z
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LP EXAMPLE: SOLVING FOR 2-P 
ZERO-SUM NASH
Can set up the same LP for the Col player, to get general LPs:
max zR min zC

s.t. (xA)j > zR for all j s.t. (Ay)i < zC for all i
Σi xi = 1 Σj yj = 1
x > 0 y > 0

Know:
• Row gets at least zR, and exactly zR if Col plays equilibrium response to announced 

strategy (has no incentive to deviate, loses exactly zR = z*)
• Col gets at most zC, and exactly zC if Row plays equilibrium response to announced 

strategy (has no incentive to deviate, gains exactly zC = z*)
So these form an equilibrium: zR = z* = zC, since:
• Row cannot increase gain due to Col being guaranteed max loss zC

• Col cannot decrease loss due to Row being guaranteed min gain zR 15Dickerson - CMSC498T



EXAMPLE: CHICKEN

16

Straight

D

Dodge

S

• Thankfully, (D, S) and (S, D) are Nash equilibria
– They are pure-strategy Nash equilibria: nobody randomizes
– They are also strict Nash equilibria: changing your strategy makes you strictly worse off

• No other pure-strategy Nash equilibria

VC

D
S

D S
???????? ????????

0, 0 -1, 1
1, -1 -5, -5
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VC

CHICKEN
Is there an NE that uses mixed strategies?  

• Say, where player 1 uses a mixed strategy?

Note: if a mixed strategy is a best response, then all of the pure strategies that it 
randomizes over must also be best responses

So we need to make player 1 indifferent between D and S
• Player 1’s utility for playing D = -pc

S
• Player 1’s utility for playing S = pc

D - 5pc
S = 1 - 6pc

S
So we need -pc

S = 1 - 6pc
S which means pc

S = 1/5
• Then, player 2 needs to be indifferent as well

Mixed-strategy Nash equilibrium: ((4/5 D, 1/5 S), (4/5 D, 1/5 S))
– People may die!  Expected utility -1/5 for each player

17

D
S

D S
0, 0 -1, 1

1, -1 -5, -5
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CRITICISMS OF NASH 
EQUILIBRIUM
Not unique in all games (like the example on Slide 31)
• Approaches for addressing this problem

• Refinements (=strengthenings) of the equilibrium concept
• Eliminate weakly dominated strategies first (IEDS)
• Choose the Nash equilibrium with highest welfare
• Subgame perfection … [see AGT book on course page]

• Mediation, communication, convention, learning, …
Collusions amongst agents not handled well
• “No agent wants to deviate on her own”
Can be disastrous to “partially” play an NE
• (More) people may die!
• Correlated equilibria – strategies selected by an outsider, but the strategies must be 

stable (see Chp 2.7 of AGT)
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CORRELATED EQUILIBRIUM
Suppose there is a trustworthy mediator who has offered to help out the players in the 
game

The mediator chooses a profile of pure strategies, perhaps randomly, then tells each 
player what her strategy is in the profile (but not what the other players’ strategies are)

A correlated equilibrium is a distribution over pure-strategy profiles so that every 
player wants to follow the recommendation of the mediator (if she assumes that the 
others do so as well)

Every Nash equilibrium is also a correlated equilibrium
• Corresponds to mediator choosing players’ recommendations independently

… but not vice versa

(Note: there are more general definitions of correlated equilibrium, but it can be shown 
that they do not allow you to do anything more than this definition.)
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EXAMPLE: CORRELATED 
EQUILIBRIUM FOR CHICKEN

20

0, 0 -1, 1

1, -1 -5, -5

20%

40%

40%

0%

D

S

D S
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C.E. FOR CHICKEN
Why is this a correlated equilibrium?

Suppose the mediator tells Row to Dodge
• From Row’s perspective, the conditional probability that Col was told to Dodge is 

20% / (20% + 40%) = 1/3
• So the expected utility of Dodging is (2/3)*(-1) = -2/3
• But the expected utility of Straight is (1/3)*1 + (2/3)*(-5) = -3
• So Row wants to follow the recommendation
If Row is told to go Straight, he knows that Col was told to Dodge, so again Row wants 
to follow the recommendation
Similar for Col

21

20%

40%

40%

0%

0, 0 -1, 1

1, -1 -5, -5
D
S

D S

Dickerson - CMSC498T



LP EXAMPLE: CORRELATED 
EQUILIBRIA FOR N PLAYERS
Recall:
• A correlated equilibrium is a distribution over pure-strategy profiles so that every player wants to follow the 

recommendation of the arbitrator

Variables are now ps where s is a profile of pure strategies
• Can enumerate!  E.g., p{Row=Dodge, Col=Straight} = 0.3

maximize whatever you like (e.g., social welfare)
subject to 
• for any i, si, si’, Σs-i p(si, s-i) ui(si, s-i) ≥ Σs-i p(si, s-i) ui(si’, s-i) 
• Σs ps = 1

(Minor aside: this has #variables exponential in the input; the dual just has #constraints exponential, though, so 
ellipsoid solves in PTIME.)
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LINEAR ALGEBRA RECAP: 
POSITIVE DEFINITE MATRIX
A linear transform �⃗� = 𝐴�⃗� is called positive definite
(written 𝐴 ≻ 0) if, for any vector �⃗�,

�⃗�!𝐴�⃗� > 0

à you can see that this means �⃗�!�⃗� > 0. 
à this means that a matrix is positive definite if 
and only if the output of the transform, �⃗�, is never 
rotated away from the input, �⃗�, by 90 degrees or 
more!  ß (useful geometric intuition)

For example, the matrix 𝐴 = 1 1
0 2 is positive-

definite.

23

𝑥!

𝑥"

𝑦!

𝑦"

A

Slide thanks to Mark Hasegawa-Johnson Dickerson - CMSC498T



QUADRATIC PROGRAMMING
A “QP” is an optimization problem with a quadratic objective function and linear 
constraints.
• Quadratic functions à convex (“looks like a cup”)

• Feasibility polytope also convex

Can also have quadratically-constrained QPs, etc
General objective: min/max  xQx + cTx
Sometimes these problems are easy to solve:
• If Q is positive definite, solvable in polynomial time

Sometimes they’re not:
• If Q is in indefinite, the problem is non-convex and NP-hard
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SO, WHAT IF WE’RE NOT 
CONVEX?
Global optimization problems deal with (un)constrained optimization of functions 
with many local optima:
• Solve to optimality?

• Try hard to find a good local optimum?

Every (non-trivial) discrete problem is non-convex:
• (Try to draw a line between two points in the feasible space.)
Combinatorial optimization: an optimization problem where at least some of the 
variables are discrete
• Still called “linear” if constraints are linear functions of the discrete variables, 

“quadratic,” etc …
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MODIFIED LP FROM EARLIER 
…
maximize 30x + 20y
subject to

4x + 2y ≤ 15
x + 2y ≤ 8
x + y ≤ 5
x ≥ 0
y ≥ 0

Optimal solution: x = 2.5, y = 2.5

Solution value: 7.5 + 5 = 12.5

Partial paintings ...?
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INTEGER (LINEAR) PROGRAM
maximize 30x + 20y
subject to

4x + 2y ≤ 15
x + 2y ≤ 8
x + y ≤ 5
x ≥ 0, integer
y ≥ 0, integer

2

0

4

6

8

2 4 6 8

optimal LP 
solution: x=2.5, 
y=2.5 
(objective 12.5)

optimal IP 
solution: x=2, 
y=3 
(objective 12)
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MIXED INTEGER (LINEAR) 
PROGRAM
maximize 30x + 20y
subject to

4x + 2y ≤ 15
x + 2y ≤ 8
x + y ≤ 5
x ≥ 0
y ≥ 0, integer

2

0

4

6

8

2 4 6 8

optimal LP 
solution: x=2.5, 
y=2.5 
(objective 12.5)

optimal IP 
solution: x=2, 
y=3 
(objective 12)

optimal MIP 
solution: x=2.75, 
y=2 
(objective 12.25)
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COMPLEXITY
Linear programs can be solved in polynomial time
• If we can represent a problem as a compact LP, we can solve that problem in 

polynomial time
• 2-player zero-sum Nash equilibrium computation
General (mixed) integer programs are NP-hard to solve
• General Nash equilibrium computation
• Computation of (most) Stackelberg problems
• Many general allocation problems

[Thanks Zico Kolter] 29Dickerson - CMSC498T



LP RELAXATION, B&B
Given an IP, the LP relaxation of that IP is the same program with any integrality 
constraints removed.
• In a maximization problem, LP OPT > IP OPT.  Why?
• So, we can use this as a PTIME upper bound during search
Branch and bound (for maximization of binary IPs):
• Start with no variable assignments at the root of a tree
• Split the search space in two by branching on a variable.  First, set it to 0, see how 

that affects the objective:
• If upper bound (LPR) of branch is worse than incumbent best solution, prune this 

branch and backtrack (aka set var to 1)
• Otherwise, possibly continue branching until all variables are set, or until all subtrees 

are pruned, or until LP = IP
Tighter LP relaxations à aggressive pruning à smaller trees
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BRANCHING
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CUTTING PLANES
“Trimming down” the LP polytope – while maintaining all feasible IP points –
results in tighter bounds:
• Extra linear constraints, called cuts, are valid to add if they remove no integral points

Lots of cuts!  Which should we add?
Can cuts be computed quickly?
• Some families of cuts can be generated quickly

• Often just generate and test separability

Sparse coefficients?
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CUTTING PLANE METHOD

𝑃 = {𝑥 ∈ 𝑅!: 𝐴𝑥 ≤ 𝑏}

𝑃 𝑃!

𝑐
𝑥"

𝑥#

𝑃" = conv−hull 𝑃 ∩ 𝑍!

𝑥$
𝑥%

𝑥#$%

𝑥&

KC
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CUTTING PLANE METHOD
Starting LP. Start with the LP relaxation of the given IP to obtain basic optimal 
solution x
Repeat until x is integral:
• Add Cuts. Find a linear inequality that is valid for the convex hull of integer solutions 

but violated by x and add it to the LP

• Re-solve LP. Obtain basic optimal solution x

Can integrate into branch and bound (“branch and cut”) – cuts will tighten the LP 
relaxation at the root or in the tree.
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PRACTICAL STUFF
{CPLEX, Gurobi, SCIP, COIN-OR}:
• Variety of problems: LPs, MIPs, QPs, QCPs, CSPs, …
• CPLEX and Gurobi are for-profit, but will give free, complete copies for academic use (look up “Academic Initiative”)
• SCIP is free for non-commercial use, COIN-OR project is free-free
• Bindings for most of the languages you’d use
cvxopt:
• Fairly general convex optimization problem solver
• Lots of reasonable bindings (e.g., http://www.cvxpy.org/)
{Matlab, Mathematica, Octave}:
• Built in LP solvers, toolkits for pretty much everything else
• If you can hook into a specialized toolkit from here (CPLEX, cvxopt), do it
Bonmin:
• If your problem looks truly crazy – very nonlinear, but with some differentiability – look at global solvers like Bonmin

35Dickerson - CMSC498T


