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CLUSTERING PRIMER

k-center: minimize the maximum 
distance from a point to its cluster 
center.

k-median: minimize the sum of 
distances from points to cluster 
centers.

k-means: minimize the sum of 
squares of distances from points to 
cluster centers.
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k = 5

Clustering is the problem of grouping data based off of  the 
distance (or similarity score) between points. 



CLUSTERING PRIMER

Generally, we minimize:

�
𝑥𝑥∈𝑋𝑋

| 𝜑𝜑 𝑥𝑥 − 𝑥𝑥 |𝑝𝑝

X is our point set.

𝜑𝜑 tells us the center for a point.

p defines what we maximize.

k-center: p = ∞

k-median: p = 1

k-center: p = 2

…
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k = 5

Clustering is the problem of grouping data based off of  the 
distance (or similarity score) between points. 



CLUSTERING PRIMER
Clustering x poorly is only one of many costs in k-median since we sum over 
many points. But for k-center, since it is the furthest point from the cluster 
center, it is very costly, in fact it defines the k-center cost.
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CLUSTERING PRIMER
We can write an integer linear program to assign points to clusters.

Let 𝐶𝐶 = 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘 be the cluster centers.

Let 𝑥𝑥𝑖𝑖 denote that 𝑥𝑥 is assigned to center 𝑖𝑖.

Objective: minimize ∑𝑐𝑐𝑖𝑖∈𝐶𝐶 ∑𝑥𝑥∈𝑋𝑋 𝑥𝑥𝑖𝑖 × | 𝑐𝑐𝑖𝑖 − 𝑥𝑥 |𝑝𝑝

Constraints: ∑𝑐𝑐𝑖𝑖∈𝐶𝐶 𝑥𝑥𝑖𝑖 = 1 for all 𝑥𝑥 ∈ 𝑋𝑋 (only assign to 1 center)

𝑥𝑥𝑖𝑖 ∈ {0,1} for all 𝑥𝑥 ∈ 𝑋𝑋 and 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶
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This may look 
nonlinear, but it’s 

a constant!



CLUSTERING PRIMER
For k-centers, we do it a bit differently. We do not put anything in 
the objective. We guess R as an upper bound on the distance to 
centers. R is the cost of the solution. We use binary search to find 
the smallest R with a feasible solution.

Objective: None!

Constraints: ∑𝑐𝑐𝑖𝑖∈𝐶𝐶∩𝐵𝐵𝑅𝑅(𝑥𝑥) 𝑥𝑥𝑖𝑖 = 1 for all 𝑥𝑥 ∈ 𝑋𝑋 (only assign to 1 center)

𝑥𝑥𝑖𝑖 = 0 for all 𝑥𝑥 ∈ 𝑋𝑋 and 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶\𝐵𝐵𝑅𝑅(𝑥𝑥)
𝑥𝑥𝑖𝑖 ∈ {0,1} for all 𝑥𝑥 ∈ 𝑋𝑋 and 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶

Note: 𝐵𝐵𝑅𝑅(𝑥𝑥) is the ball of radius R around x (i.e., points within R from x).
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DISPARATE IMPACT
Griggs vs Duke Power Co:

• North Carolina, 1970

• Required high school 
diploma and standardized 
testing for promotion

• Sued for discrimination

• Ruled discriminatory by SC 
because it had “a 
disproportionate and 
adverse impact on certain 
individuals”
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DISPARATE IMPACT IN 
CLUSTERING
Applying to ML: Ensure the impact of a system across protected 
groups is proportionate. “Group fairness.”

Applying to clustering:
• How do we measure the impact of a system on a protected 

group?
• How many individuals are in a cluster

• How do we prevent disparate impact?
• Ensure the number of individuals from any group in any 

cluster is proportionate to group size.
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CLUSTERING NEWS 
ARTICLES
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Student Debt

Immigration

Global Warming
Health Care



RUNNING EXAMPLE: 
NEWS SEARCH
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CLUSTERING NEWS 
ARTICLES
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Student Debt

Immigration

Global Warming
Health Care

Some right-leaning article 
here.



KEY:

= Right-leaning article

= Left-leaning article

GROUP FAIRNESS IN 
CLUSTERING: FORMAL

For a cluster C:

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏(𝐶𝐶) ≔ min
#𝑟𝑟𝑏𝑏𝑟𝑟(𝐶𝐶)
#𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐶𝐶)

,
#𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐶𝐶)
#𝑟𝑟𝑏𝑏𝑟𝑟(𝐶𝐶)

For a clustering S:
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏(𝑆𝑆) ≔ min

𝐶𝐶∈𝑆𝑆
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏(𝐶𝐶)

We want balance to be high (close 
to 1).

Before: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝑆𝑆 = 1/2
After: 
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𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝐶𝐶1 = 1

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝐶𝐶2 = 1

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝐶𝐶3 = 1/2 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝐶𝐶4 = 1/2



For a cluster C:

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏(𝐶𝐶) ≔ min
#𝑟𝑟𝑏𝑏𝑟𝑟(𝐶𝐶)
#𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐶𝐶)

,
#𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐶𝐶)
#𝑟𝑟𝑏𝑏𝑟𝑟(𝐶𝐶)

For a clustering S:
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏(𝑆𝑆) ≔ min

𝐶𝐶∈𝑆𝑆
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏(𝐶𝐶)

We want balance to be high (close 
to 1).

Before: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝑆𝑆 = 1/2
After: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝑆𝑆 = 1

KEY:

= Right-leaning article

= Left-leaning article

GROUP FAIRNESS IN 
CLUSTERING: FORMAL
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𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝐶𝐶1 = 1

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝐶𝐶2 = 1

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝐶𝐶3 = 1

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 𝐶𝐶4 = 1



FINDING FAIR 
CLUSTERINGS: FAIRLETS
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Let:
b/r = 1/3 is the minimum ratio 
between reds and blues

R = number of remaining reds = 10

B = number of remaining blues = 5

α = 1/3 is our fair parameter

Iteratively…

IF (R-B) ≥ (r-b): make a 
cluster of r reds and b blues.

ELSE: use (R-B)+b red and b 
blue points.

When r=b: simply match 
points

This is
the best balance 
we can achieve



FINDING FAIR 
CLUSTERINGS: FAIRLETS
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Let:
b/r = 1/3 is the minimum ratio 
between reds and blues

R = number of remaining reds = 7

B = number of remaining blues = 4

α = 1/3 is our fair parameter

Iteratively…

IF (R-B) ≥ (r-b): make a 
cluster of r reds and b blues.

ELSE: use (R-B)+b red and b 
blue points.

When r=b: simply match 
points

This is
the best balance 
we can achieve



FINDING FAIR 
CLUSTERINGS: FAIRLETS
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Let:
b/r = 1/3 is the minimum ratio 
between reds and blues

R = number of remaining reds = 4

B = number of remaining blues = 3

α = 1/3 is our fair parameter

Iteratively…

IF (R-B) ≥ (r-b): make a 
cluster of r reds and b blues.

ELSE: use (R-B)+b red and b 
blue points.

When r=b: simply match 
points

This is
the best balance 
we can achieve



FINDING FAIR 
CLUSTERINGS: FAIRLETS
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Let:
b/r = 1/3 is the minimum ratio 
between reds and blues

R = number of remaining reds = 2

B = number of remaining blues = 2

α = 1/3 is our fair parameter

Iteratively…

IF (R-B) ≥ (r-b): make a 
cluster of r reds and b blues.

ELSE: use (R-B)+b red and b 
blue points.

When r=b: simply match 
points

This is
the best balance 
we can achieve



FINDING FAIR 
CLUSTERINGS: FAIRLETS
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Let:
b/r = 1/3 is the minimum ratio 
between reds and blues

R = number of remaining reds = 0

B = number of remaining blues = 0

α = 1/3 is our fair parameter

Iteratively…

IF (R-B) ≥ (r-b): make a 
cluster of r reds and b blues.

ELSE: use (R-B)+b red and b 
blue points.

When r=b: simply match 
points

This is
the best balance 
we can achieve

Idea: Find a “fairlet decomposition” with 
small fairlets. Find a way to merge them 

into a good, appropriately-sized clustering.



FAIRLETS WHEN B/R=1
Say half of your points are red 
and half are blue.

Make a bipartite graph between 
red and blue points. Edge 
weights are distances.

Find a perfect, maximum weight 
matching.

Construct 2-sized fairlets made of 
the matches.
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u vd(u,v)



FAIRLETS WHEN 
B/R=1/T’
Let B be the number of blues, R be the number of reds. Assume B/R = 
1/t’ for an integer t’.

Fairlets can be found using minimum cost flow (a network flow problem 
where edges are labeled with associated edge costs, edge flow 
capacities, and a flow supply/demand at vertices.

20

t’ = 2



USING FAIRLETS FOR 
FAIR CLUSTERING
1. Find a good fairlet decomposition.
2. Replace each fairlet with a single point. Duplicate that point according to 

the fairlet size.
3. Run a “vanilla” clustering on these points. 
4. Apply this clustering to the original points.

21

x4 x4

x3 x2 x2



USING FAIRLETS FOR 
FAIR CLUSTERING
Let: Y be our fairlet decomposition, Y’ be our transformed point 
set, and S be our final clustering.

Theorem: for k-median and k-center: cost(S) = cost(Y) + cost(Y’)
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x4 x4

x3 x2 x2



GENERALIZING TO 
MORE COLORS

23

For each color i, we get bounds 
α𝑖𝑖 , β𝑖𝑖 to bound the proportional 
representation of i.

A cluster C is fair if for all colors i:
α𝑖𝑖 × 𝐶𝐶 ≤ 𝑖𝑖 𝐶𝐶 ≤ β𝑖𝑖 × 𝐶𝐶

Where 𝑖𝑖 𝐶𝐶 is the number of 𝑖𝑖
colored points in 𝐶𝐶.KEY:

= Right-leaning article

= Left-leaning article

= Green party-leaning article



GENERALIZING TO 
MORE COLORS
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KEY:

= Right-leaning article

= Left-leaning article

= Green party-leaning article

Is this clustering fair for the 
following values?

α𝑟𝑟𝑟𝑟𝑟𝑟= 1/4        β𝑟𝑟𝑟𝑟𝑟𝑟 = 1/2

α𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔= 1/3     β𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔 = 1/2

α𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟= 1/4       β𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟 = 1/2

What about…

α𝑟𝑟𝑟𝑟𝑟𝑟= 1/5        β𝑟𝑟𝑟𝑟𝑟𝑟 = 1/2

α𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔= 1/4     β𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔 = 3/5

α𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟= 1/4       β𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟 = 1/2



ILP FOR FAIR 
CLUSTERING
For this approach, we will use a linear program as an intermediate 
step, but it will not be used to solve the whole problem.

1. Ignore fairness. Find a good vanilla clustering. This gives 
cluster centers.

2. Use a LP relaxation of an ILP to fairly assign points to 
centers.

3. Round the LP to an integer solution.
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ILP FOR FAIR 
CLUSTERING STEP 1
Step 1: Ignore fairness. Find a good vanilla clustering.
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ILP FOR FAIR 
CLUSTERING STEP 2
Step 2: Use a LP relaxation of an ILP to fairly assign points to 
centers.
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Let 𝐶𝐶 = 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘 be our given cluster centers.
Let 𝑥𝑥𝑖𝑖 denote that 𝑥𝑥 is assigned to center 𝑖𝑖.
Let R be our distance guess.

Objective: None!

Constraints: ∑𝑐𝑐𝑖𝑖∈𝐶𝐶∩𝐵𝐵𝑅𝑅(𝑥𝑥) 𝑥𝑥𝑖𝑖 = 1 for all 𝑥𝑥 ∈ 𝑋𝑋
α𝑖𝑖 ∑𝑥𝑥∈𝑋𝑋 𝑥𝑥𝑖𝑖 ≤ ∑𝑗𝑗 𝑐𝑐𝑐𝑐𝑏𝑏𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟 𝑥𝑥∈𝑋𝑋 𝑥𝑥𝑖𝑖 ≤ β𝑖𝑖 ∑𝑥𝑥∈𝑋𝑋 𝑥𝑥𝑖𝑖 for all 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶 and colors j
0 ≤ 𝑥𝑥𝑖𝑖 ≤ 1 for all 𝑥𝑥 ∈ 𝑋𝑋 and 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶



ILP FOR FAIR 
CLUSTERING STEP 3
Now we have a set of cluster centers and a fair fractional 
assignment of points to centers.

In other words, x can be ½ assigned to one center and ½ 
assigned to another!

Step 3: Round these to whole numbers (i.e., a real assignment).
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x

y

z

𝑐𝑐1

𝑐𝑐2

½

½
½

½

1

x

y

z

𝑐𝑐1

𝑐𝑐2
1

1

1



FAIR DATA 
SUMMARIZATION

29

Data summarization: Select a 
subset of points that “represent” 
your data.

Method: Do a clustering, and 
select the cluster centers.

Fairness: for every color i, 
there must be at least ki
representatives of that color.

Say kred = kblue = kgreen = 1



FAIRNESS THROUGH 
PROPORTIONALITY

30

Say you want to build parks 3 
parks. You have two dense 
cities and 1 rural area. There 
are 6 park location options 
(blue-rimmed circles).

Blocking coalition: a set of n/3
people such that there is 1 park 
location that they all prefer to 
their given location.

Proportional clustering: one 
with no blocking coalition.
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