
MECHANISM DESIGN

JOHN P DICKERSON AND MARINA KNITTEL

Lecture #7 – 02/14/2022

CMSC498T
Mondays & Wednesdays
2:00pm – 3:15pm

THIS CLASS:
MATCHING & MAYBE THE NRMP

2

OVERVIEW OF THIS
LECTURE
Stable marriage problem

• Bipartite, one vertex to one vertex

Stable roommates problem
• Not bipartite, one vertex to one vertex

Hospitals/Residents problem
• Bipartite, one vertex to many vertices

3

MATCHING WITHOUT
INCENTIVES
Given a graph G = (V, E), a matching is any set of pairwise non-
adjacent edges
• No two edges share the same vertex
• Classical combinatorial optimization problem
Bipartite matching:
• Bipartite graph G = (U, V, E)
• Max cardinality/weight matching found easily – O(VE) and better

• E.g., through network flow, Hungarian algorithm, etc
Matching in general graphs:
• Also PTIME via Edmond’s

algorithm – O(V2E) and better

4

STABLE MATCHING
PROBLEM
Complete bipartite graph with equal sides:

• n horses and n jockeys
Each horse has a strict, complete preference ordering over
jockeys, and vice versa

Want: a stable matching

Stable matching: No
unmatched horse and

jockey both prefer
each other to their
current matches

5

Thanks Prof. Xanda Schofield for the example!

EXAMPLE PREFERENCE
PROFILES

Alice
Bob
Eve

Donkey
Spirit
Swiftwind

> >

6

EXAMPLE PREFERENCE
PROFILES

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >

7

EXAMPLE MATCHING #1
Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

Is this a stable matching?

8

EXAMPLE MATCHING #1
Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

No.
Alice and Spirit form a blocking pair.

9

EXAMPLE MATCHING #2
Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

What about this matching?

10

EXAMPLE MATCHING #2
Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

Yes!
(Swiftwind and Eve are unhappy, but helpless.)

11

THROWBACK MONDAY:
INT. LINEAR PROGRAMS
Can we formulate this as a linear program?

Spoiler: Yes we can
Another spoiler: You’re going to do it!

What are our variables?
𝒙𝒙𝒉𝒉𝒉𝒉 for each horse 𝒉𝒉∈{1, … ,𝒏𝒏} and jockey 𝒉𝒉∈{1, … ,𝒏𝒏}

How are they bounded?
𝒙𝒙𝒉𝒉𝒉𝒉 ∈ {𝟎𝟎,𝟏𝟏}, indicating if the horse and jockey are matched

How do we ensure everyone is only matched once?
∑𝒉𝒉∈{𝟏𝟏,…,𝒏𝒏}𝒙𝒙𝒉𝒉𝒉𝒉 ≤ 𝟏𝟏 for all 𝒉𝒉∈{1, … ,𝒏𝒏} (covers horses)
∑𝒉𝒉∈{𝟏𝟏,…,𝒏𝒏}𝒙𝒙𝒉𝒉𝒉𝒉 ≤ 𝟏𝟏 for all 𝒉𝒉∈{1, … ,𝒏𝒏} (covers jockeys)

How do we ensure stability?
∑𝒉𝒉𝒋>𝒉𝒉𝒉𝒉 𝒙𝒙𝒉𝒉𝒉𝒉𝒋 + ∑𝒉𝒉𝒋>𝒉𝒉𝒉𝒉 𝒙𝒙𝒉𝒉𝒋𝒉𝒉 + 𝒙𝒙𝒉𝒉𝒉𝒉 ≥ 𝟏𝟏 for all 𝒉𝒉,𝒉𝒉∈{1, … ,𝒏𝒏}

12𝒉𝒉 prefers its match to 𝒉𝒉 𝒉𝒉 prefers its match to 𝒉𝒉 𝒉𝒉 is matched to 𝒉𝒉OROR

THROWBACK MONDAY:
INT. LINEAR PROGRAMS
Optimize: Nothing

∑𝒉𝒉∈{𝟏𝟏,…,𝒏𝒏}𝒙𝒙𝒉𝒉𝒉𝒉 ≤ 𝟏𝟏 for all 𝒉𝒉∈{1, … ,𝒏𝒏}

∑𝒉𝒉∈{𝟏𝟏,…,𝒏𝒏}𝒙𝒙𝒉𝒉𝒉𝒉 ≤ 𝟏𝟏 for all 𝒉𝒉∈{1, … ,𝒏𝒏}

∑𝒉𝒉𝒋>𝒉𝒉𝒉𝒉 𝒙𝒙𝒉𝒉𝒉𝒉𝒋 + ∑𝒉𝒉𝒋>𝒉𝒉𝒉𝒉 𝒙𝒙𝒉𝒉𝒋𝒉𝒉 + 𝒙𝒙𝒉𝒉𝒉𝒉 ≥ 𝟏𝟏 for all 𝒉𝒉,𝒉𝒉∈{1, … ,𝒏𝒏}

𝒙𝒙𝒉𝒉𝒉𝒉 ∈ {𝟎𝟎,𝟏𝟏} for all 𝒉𝒉,𝒉𝒉∈{1, … ,𝒏𝒏}

What does this give us?
• If there is a stable matching, this finds one
• This might take exponential time!
• Open question: Can there exist no stable matching?

13

Does a stable solution to the marriage problem always exist?
Can we compute such a solution efficiently?
Can we compute the best stable solution efficiently?

SOME QUESTIONS

Hmm …

Lloyd Shapley David Gale

Hmm …

14

GALE-SHAPLEY [1962]
Idea: men propose to women

15

GALE-SHAPLEY [1962]
Idea: jockeys “propose” to horses
1. Everyone is unmatched
2. While some jockey 𝒉𝒉 is unmatched:

• 𝒉𝒉 ≔ 𝒉𝒉’s most-preferred horse to whom
they have not proposed yet

• If 𝒉𝒉 is also unmatched:
• 𝒉𝒉 and 𝒉𝒉 are engaged

• Else if 𝒉𝒉 prefers 𝒉𝒉 to their current match 𝒉𝒉′
• 𝒉𝒉 and 𝒉𝒉 are engaged, 𝒉𝒉′ is unmatched

• Else: 𝒉𝒉 rejects 𝒉𝒉
3. Return matched pairs

16

RUNNING GS

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >

17

RUNNING GS

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >

18

RUNNING GS

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >

19

RUNNING GS

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >

20

RUNNING GS

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >

21

RUNNING GS

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >

22

RUNNING GS

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >

23

Claim
GS terminates in polynomial time (at most n2

iterations of the outer loop)

Proof:
• Each iteration, one jockey proposes to

someone to whom they have never proposed
before

• n horses, n jockeys n×n possible events

(Can tighten a bit to n(n - 1) + 1 iterations.)

24

Claim
GS results in a perfect matching

Proof by contradiction:
• Suppose BWOC that 𝒉𝒉 is unmatched at

termination
• n horses, n jockeys 𝒉𝒉 is unmatched, too
• Once a horse is proposed to, they are matched

and never unmatched; they only swap
partners. Thus, nobody proposed to 𝒉𝒉

• 𝒉𝒉 proposed to everyone (by def. of GS): ><

25

Claim
GS results in a stable matching (i.e., there

are no blocking pairs)

Proof by contradiction (1):
• Assume 𝒉𝒉 and 𝒉𝒉 form a

blocking pair

Case #1: 𝒉𝒉 never proposed to 𝒉𝒉
• GS: jockeys propose in

order of preferences
• 𝒉𝒉 prefers current match 𝒉𝒉𝒋 >

𝒉𝒉 (since it proposed to 𝐡𝐡𝒋
and not 𝐡𝐡)

• 𝒉𝒉 and 𝒉𝒉 are not blocking

26

𝒉𝒉 𝒉𝒉

𝒉𝒉 and 𝒉𝒉 are not matched
𝒉𝒉 and 𝒉𝒉′ are matched
𝒉𝒉′ and 𝒉𝒉 are matched

𝒉𝒉′ 𝒉𝒉′

𝒉𝒉 prefers 𝒉𝒉 to 𝒉𝒉𝒋
𝒉𝒉 prefers 𝒉𝒉 to 𝒉𝒉′

𝒉𝒉s proposals:

…

𝒉𝒉′

…

𝒉𝒉

…

Claim
GS results in a stable matching (i.e., there

are no blocking pairs)

Proof by contradiction (2):
Case #2: 𝒉𝒉 proposed to 𝒉𝒉
• 𝒉𝒉 rejected 𝒉𝒉 at some point
• GS: horses only reject for

better jockeys
• 𝒉𝒉 prefers current partner

𝒉𝒉𝒋 > 𝒉𝒉
• 𝒉𝒉 and 𝒉𝒉 are not blocking

Case #1 and #2 exhaust space.
><

27

𝒉𝒉 𝒉𝒉

𝒉𝒉 and 𝒉𝒉 are not matched
𝒉𝒉 and 𝒉𝒉′ are matched
𝒉𝒉′ and 𝒉𝒉 are matched

𝒉𝒉′ 𝒉𝒉′

𝒉𝒉 prefers 𝒉𝒉 to 𝒉𝒉𝒋
𝒉𝒉 prefers 𝒉𝒉 to 𝒉𝒉′

𝒉𝒉 proposers: 𝒉𝒉 rejections

… …

𝒉𝒉 …

… …

𝒉𝒉′ 𝒉𝒉

… …

Does a stable solution to the marriage problem always exist?

Can we compute such a solution efficiently?

Can we compute the best stable solution efficiently?

RECAP: SOME QUESTIONS

We’ll look at a specific notion of “the best” –
optimality with respect to one side of the market

28

HORSE/JOCKEY
OPTIMALITY/PESSIMALITY
Let S be the set of stable matchings

𝒉𝒉 is a valid partner of 𝒉𝒉 (and vice versa) if there exists some
stable matching 𝑆𝑆 in S where they are paired

A matching is jockey optimal (resp. horse optimal) if each
jockey (resp. horse) receives their best valid partner

• Is this a perfect matching? Stable?
A matching is jockey pessimal (resp. horse pessimal) if each
jockey (resp. horse) receives their worst valid partner

29

Claim
GS – with the jockey proposing – results in a

jockey-optimal matching

Proof by contradiction (1):
• Jockey propose in order

at least one jockey was
rejected by a valid partner

• Let 𝒉𝒉 and 𝒉𝒉 be the first such
reject in 𝑆𝑆

• Let 𝑆𝑆′ be a stable matching
with 𝒉𝒉, 𝒉𝒉 paired

(𝑆𝑆′ exists by def. of valid)
• 𝒉𝒉 is rejected in 𝑆𝑆 because 𝒉𝒉

chose some 𝒉𝒉𝒋 > 𝒉𝒉

30

𝒉𝒉 𝒉𝒉

𝒉𝒉 and 𝒉𝒉 are not matched in
𝑆𝑆, they are valid partners

𝑆𝑆 is stable

Claim
GS – with the jockey proposing – results in a

jockey-optimal matching

Proof by contradiction (1):
• Jockey propose in order

at least one jockey was
rejected by a valid partner

• Let 𝒉𝒉 and 𝒉𝒉 be the first such
reject in 𝑆𝑆

• Let 𝑆𝑆′ be a stable matching
with 𝒉𝒉, 𝒉𝒉 paired

(𝑆𝑆′ exists by def. of valid)
• 𝒉𝒉 is rejected in 𝑆𝑆 because 𝒉𝒉

chose some 𝒉𝒉𝒋 > 𝒉𝒉

31

𝒉𝒉 𝒉𝒉

𝒉𝒉 and 𝒉𝒉 are not matched in
𝑆𝑆, they are valid partners
𝒉𝒉 and 𝒉𝒉 are matched in 𝑆𝑆′

𝑆𝑆′

𝑆𝑆 is stable
𝑆𝑆′ is stable

Claim
GS – with the jockey proposing – results in a

jockey-optimal matching

Proof by contradiction (1):
• Jockey propose in order

at least one jockey was
rejected by a valid partner

• Let 𝒉𝒉 and 𝒉𝒉 be the first such
reject in 𝑆𝑆

• Let 𝑆𝑆′ be a stable matching
with 𝒉𝒉, 𝒉𝒉 paired

(𝑆𝑆′ exists by def. of valid)
• 𝒉𝒉 is rejected in 𝑆𝑆 because 𝒉𝒉

chose some 𝒉𝒉𝒋 > 𝒉𝒉

32

𝒉𝒉 𝒉𝒉

𝒉𝒉 and 𝒉𝒉 are not matched in
𝑆𝑆, they are valid partners
𝒉𝒉 and 𝒉𝒉 are matched in 𝑆𝑆′
𝒉𝒉′ and 𝒉𝒉 are matched in 𝑆𝑆

𝒉𝒉′
𝑆𝑆 is stable
𝑆𝑆′ is stable

𝑆𝑆
𝑆𝑆′

Claim
GS – with the jockey proposing – results in a

jockey-optimal matching

Proof by contradiction (2):
• Let 𝒉𝒉′ be match of 𝒉𝒉′ in 𝑆𝑆′
• 𝒉𝒉′ was not rejected by valid

partner in 𝑆𝑆 before 𝒉𝒉 was
rejected by 𝒉𝒉 (by assump.)
 𝒉𝒉𝒋 prefers 𝒉𝒉 to 𝒉𝒉′

• Know 𝒉𝒉 prefers 𝒉𝒉𝒋 over 𝒉𝒉,
their jockey in 𝑆𝑆′
 𝒉𝒉′ and 𝒉𝒉 form a blocking

pair in 𝑆𝑆′ ><

33

𝒉𝒉 𝒉𝒉

𝒉𝒉 and 𝒉𝒉 are not matched in
𝑆𝑆, they are valid partners
𝒉𝒉 and 𝒉𝒉 are matched in 𝑆𝑆′
𝒉𝒉′ and 𝒉𝒉 are matched in 𝑆𝑆

𝒉𝒉′ 𝒉𝒉′
𝑆𝑆 is stable
𝑆𝑆′ is stable

𝑆𝑆
𝑆𝑆′

𝑆𝑆

Claim
GS – with the jockey proposing – results in a

jockey-optimal matching

Proof by contradiction (2):
• Let 𝒉𝒉′ be match of 𝒉𝒉′ in 𝑆𝑆′
• 𝒉𝒉′ was not rejected by valid

partner in 𝑆𝑆 before 𝒉𝒉 was
rejected by 𝒉𝒉 (by assump.)
 𝒉𝒉𝒋 prefers 𝒉𝒉 to 𝒉𝒉′

• Know 𝒉𝒉 prefers 𝒉𝒉𝒋 over 𝒉𝒉,
their jockey in 𝑆𝑆′
 𝒉𝒉′ and 𝒉𝒉 form a blocking

pair in 𝑆𝑆′ ><

34

𝒉𝒉 𝒉𝒉

𝒉𝒉 and 𝒉𝒉 are not matched in
𝑆𝑆, they are valid partners
𝒉𝒉 and 𝒉𝒉 are matched in 𝑆𝑆′
𝒉𝒉′ and 𝒉𝒉 are matched in 𝑆𝑆
𝒉𝒉′ and 𝒉𝒉′ are matched in 𝑆𝑆′

𝒉𝒉′ 𝒉𝒉′
𝑆𝑆 is stable
𝑆𝑆′ is stable

𝑆𝑆
𝑆𝑆′

𝑆𝑆′

Can’t come
before 𝒉𝒉 since
𝒉𝒉′ and 𝒉𝒉′ are
valid partners

𝒉𝒉′ proposals:

…

𝒉𝒉

…

𝒉𝒉′

…

Claim
GS – with the jockey proposing – results in a

jockey-optimal matching

Proof by contradiction (2):
• Let 𝒉𝒉′ be match of 𝒉𝒉′ in 𝑆𝑆′
• 𝒉𝒉′ was not rejected by valid

partner in 𝑆𝑆 before 𝒉𝒉 was
rejected by 𝒉𝒉 (by assump.)
 𝒉𝒉𝒋 prefers 𝒉𝒉 to 𝒉𝒉′

• Know 𝒉𝒉 prefers 𝒉𝒉𝒋 over 𝒉𝒉,
their jockey in 𝑆𝑆′
 𝒉𝒉′ and 𝒉𝒉 form a blocking

pair in 𝑆𝑆′ ><

35

𝒉𝒉 𝒉𝒉

𝒉𝒉 and 𝒉𝒉 are not matched in
𝑆𝑆, they are valid partners
𝒉𝒉 and 𝒉𝒉 are matched in 𝑆𝑆′
𝒉𝒉′ and 𝒉𝒉 are matched in 𝑆𝑆
𝒉𝒉′ and 𝒉𝒉′ are matched in 𝑆𝑆′

𝒉𝒉′ 𝒉𝒉′
𝑆𝑆 is stable
𝑆𝑆′ is stable

𝑆𝑆
𝑆𝑆′

𝑆𝑆′

𝒉𝒉′ proposals:

…

𝒉𝒉

…

𝒉𝒉′

…

𝒉𝒉 proposers:

…

𝒉𝒉

…

𝒉𝒉𝒋

…

Does a stable solution to the marriage problem always exist?

Can we compute such a solution efficiently?

Can we compute the best stable solution efficiently?

RECAP: SOME
QUESTIONS

For one side of the market. What about the other
side?

*

36

Claim
GS – with the jockey proposing – results in a

horse-pessimal matching

Proof by contradiction:
• 𝒉𝒉 and 𝒉𝒉 matched in 𝑆𝑆, 𝒉𝒉 is

not worst valid
• exists stable 𝑆𝑆′ with 𝒉𝒉

paired to 𝒉𝒉𝒋, where 𝒉𝒉
prefers to 𝒉𝒉 to 𝒉𝒉𝒋

• Let 𝒉𝒉′ be partner of 𝒉𝒉 in 𝑆𝑆′
• 𝒉𝒉 prefers to 𝒉𝒉 to 𝒉𝒉′ (by

jockey-optimality of 𝑆𝑆)
• 𝒉𝒉 and 𝒉𝒉 form blocking

pair in 𝑆𝑆’ ><

37

𝒉𝒉 𝒉𝒉

𝒉𝒉 and 𝒉𝒉 are matched in 𝑆𝑆
𝒉𝒉′ and 𝒉𝒉 are matched in 𝑆𝑆′
𝒉𝒉 and 𝒉𝒉′ are matched in 𝑆𝑆′

𝑆𝑆

Claim
GS – with the jockey proposing – results in a

horse-pessimal matching

Proof by contradiction:
• 𝒉𝒉 and 𝒉𝒉 matched in 𝑆𝑆, 𝒉𝒉 is

not worst valid
• exists stable 𝑆𝑆′ with 𝒉𝒉

paired to 𝒉𝒉𝒋, where 𝒉𝒉
prefers to 𝒉𝒉 to 𝒉𝒉𝒋

• Let 𝒉𝒉′ be partner of 𝒉𝒉 in 𝑆𝑆′
• 𝒉𝒉 prefers to 𝒉𝒉 to 𝒉𝒉′ (by

jockey-optimality of 𝑆𝑆)
• 𝒉𝒉 and 𝒉𝒉 form blocking

pair in 𝑆𝑆’ ><

38

𝒉𝒉 𝒉𝒉

𝒉𝒉 and 𝒉𝒉 are matched in 𝑆𝑆
𝒉𝒉′ and 𝒉𝒉 are matched in 𝑆𝑆′
𝒉𝒉 and 𝒉𝒉′ are matched in 𝑆𝑆′

𝒉𝒉′
𝑆𝑆′

𝑆𝑆

Claim
GS – with the jockey proposing – results in a

horse-pessimal matching

Proof by contradiction:
• 𝒉𝒉 and 𝒉𝒉 matched in 𝑆𝑆, 𝒉𝒉 is

not worst valid
• exists stable 𝑆𝑆′ with 𝒉𝒉

paired to 𝒉𝒉𝒋, where 𝒉𝒉
prefers to 𝒉𝒉 to 𝒉𝒉𝒋

• Let 𝒉𝒉′ be partner of 𝒉𝒉 in 𝑆𝑆′
• 𝒉𝒉 prefers to 𝒉𝒉 to 𝒉𝒉′ (by

jockey-optimality of 𝑆𝑆)
• 𝒉𝒉 and 𝒉𝒉 form blocking

pair in 𝑆𝑆’ ><

39

𝒉𝒉 𝒉𝒉

𝒉𝒉 and 𝒉𝒉 are matched in 𝑆𝑆
𝒉𝒉′ and 𝒉𝒉 are matched in 𝑆𝑆′
𝒉𝒉 and 𝒉𝒉′ are matched in 𝑆𝑆′

𝒉𝒉′ 𝒉𝒉′
𝑆𝑆′

𝑆𝑆

𝑆𝑆′

Claim
GS – with the jockey proposing – results in a

horse-pessimal matching

Proof by contradiction:
• 𝒉𝒉 and 𝒉𝒉 matched in 𝑆𝑆, 𝒉𝒉 is

not worst valid
• exists stable 𝑆𝑆′ with 𝒉𝒉

paired to 𝒉𝒉𝒋, where 𝒉𝒉
prefers to 𝒉𝒉 to 𝒉𝒉𝒋

• Let 𝒉𝒉′ be partner of 𝒉𝒉 in 𝑆𝑆′
• 𝒉𝒉 prefers to 𝒉𝒉 to 𝒉𝒉′ (by

jockey-optimality of 𝑆𝑆)
• 𝒉𝒉 and 𝒉𝒉 form blocking

pair in 𝑆𝑆’ ><

40

𝒉𝒉 𝒉𝒉

𝒉𝒉 and 𝒉𝒉 are matched in 𝑆𝑆
𝒉𝒉′ and 𝒉𝒉 are matched in 𝑆𝑆′
𝒉𝒉 and 𝒉𝒉′ are matched in 𝑆𝑆′

𝒉𝒉′ 𝒉𝒉′
𝑆𝑆′

𝑆𝑆

𝑆𝑆′

Claim
GS – with the jockey proposing – results in a

horse-pessimal matching

Proof by contradiction:
• 𝒉𝒉 and 𝒉𝒉 matched in 𝑆𝑆, 𝒉𝒉 is

not worst valid
• exists stable 𝑆𝑆′ with 𝒉𝒉

paired to 𝒉𝒉𝒋, where 𝒉𝒉
prefers to 𝒉𝒉 to 𝒉𝒉𝒋

• Let 𝒉𝒉′ be partner of 𝒉𝒉 in 𝑆𝑆′
• 𝒉𝒉 prefers to 𝒉𝒉 to 𝒉𝒉′ (by

jockey-optimality of 𝑆𝑆)
• 𝒉𝒉 and 𝒉𝒉 form blocking

pair in 𝑆𝑆’ ><

41

𝒉𝒉 𝒉𝒉

𝒉𝒉 and 𝒉𝒉 are matched in 𝑆𝑆
𝒉𝒉′ and 𝒉𝒉 are matched in 𝑆𝑆′
𝒉𝒉 and 𝒉𝒉′ are matched in 𝑆𝑆′

𝒉𝒉′ 𝒉𝒉′
𝑆𝑆′

𝑆𝑆

𝑆𝑆′

INCENTIVE ISSUES
Can either side benefit by misreporting?

• (Slight extension for rest of talk: participants can mark possible
matches as unacceptable – a form of preference list truncation)

Any algorithm that yields a jockey-
(horse-)optimal matching

truthful revelation by jockeys (horses)

is dominant strategy [Roth 1982]

42

Alice Donkey Spirit
Bob Spirit Donkey

Donkey Bob Alice
Spirit Alice Bob

In GS with jockey proposing, horses
can benefit by misreporting preferences

Alice Donkey Spirit
Bob Spirit Donkey

Donkey Bob Alice
Spirit Alice Bob

Truthful reporting

Strategic reporting

Alice Donkey Spirit
Bob Spirit Donkey

Donkey Bob

Spirit Alice Bob

Alice Donkey Spirit
Bob Spirit Donkey

Donkey Bob

Spirit Alice Bob

43

Claim
There is no matching mechanism that:

1. is strategy proof (for both sides); and
2. always results in a stable outcome (given

revealed preferences)

44

EXTENSIONS TO STABLE MATCHING

45

IMBALANCE [ASHLAGI ET AL. 2013]

What if we have n jockeys and n’ ≠ n horses?
How does this affect participants? Core size?

• Being on short side of
market: good!

• W.h.p., short side get
rank ~log(n)

• … long side gets
rank ~random

horses held constant at n’ = 40

46

jockeysJo
ck

ey
 a

vg
 ra

nk
 o

f m
at

ch
es

IMBALANCE [ASHLAGI ET AL. 2013]

Not many stable matchings with even small imbalances in the
market

47

jockeys

Av
g

pe
rc

en
t o

f m
at

ch
ed

 jo
ck

ey
s

w
ith

 m
ul

tip
le

 s
ta

bl
e

pa
rtn

er
s

IMBALANCE [ASHLAGI ET AL. 2013]

“Rural hospital theorem” [Roth 1986]:
• The set of jockeys and horses that are unmatched is the

same for all stable matchings
Assume n jockeys, n+1 horses

• One horse 𝒉𝒉 unmatched in all stable matchings
• Drop 𝒉𝒉, same stable matchings

Take stable matchings with n horses
• Stay stable when we add in 𝒉𝒉 if no jockeys prefer 𝒉𝒉 to their

current match
• average rank of jockey’s matches is low

48

ONLINE ARRIVAL [KHULLER ET AL. 1993]

Random preferences, jockeys arrive over time, once matched
nobody can switch
Algorithm: match 𝒉𝒉 to highest-ranked free 𝒉𝒉

• On average, O(nlog(n)) unstable pairs
No deterministic or randomized algorithm can do better than
Ω(n2) unstable pairs!

• Not better with randomization

49

INCOMPLETE PREFS
[MANLOVE ET AL. 2002]

Before: complete + strict preferences
• Easy to compute, lots of nice properties

Incomplete preferences
• May exist: stable matchings of different sizes

Everything becomes hard!
• Finding max or min cardinality stable matching
• Determining if < 𝒉𝒉, 𝒉𝒉 > are stable
• Finding/approx. finding “egalitarian” matching

50

NON-BIPARTITE GRAPH …?
Matching is defined on general graphs:

• “Set of edges, each vertex included at most once”
The stable roommates problem is bipartite stable matching
generalized to any graph
Each vertex ranks all n-1 other vertices

• (Variations with/without truncation)
Same notion of stability

51

IS THIS DIFFERENT THAN
BIPARTITE STABLE MATCHING?

Alana Brian Cynthia Dracula
Brian Cynthia Alana Dracula
Cynthia Alana Brian Dracula
Dracula (Anyone) (Anyone) (Anyone)

No stable matching exists!
Anyone paired with Dracula (i) prefers

some other v and (ii) is preferred by that v

52

> >

HOPELESS?
Can we build an algorithm that:

• Finds a stable matching; or
• Reports nonexistence

… In polynomial time?

Yes! [Irving 1985]
• Builds on Gale-Shapley ideas and

work by McVitie and Wilson [1971]

Hmm …

53

IRVING’S ALGORITHM:
PHASE 1
Idea: Run an algorithm very similar to Gale-Shapley
• Everyone proposes to everyone
• Individuals hold 2 types of temporary matches: matches where

they propose and matches where they are proposed to (the
former will be weakly better)

After this step: one person is unmatched nonexistence
Else: create a reduced set of preferences

• a holds proposal from b a truncates all x after b
• For each removed x, also remove a from x’s preferences
• Note: b at end of a’s list a at start of b’s list

If any reduced set is empty: nonexistence
Else: this is a “stable table” – continue to Phase 2

54

RUNNING THE
ALGORITHM: PHASE 1

Alice Bob Dave Frank Eve Carol
Bob Eve Carol Frank Dave Alice
Carol Bob Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

55

> > >
Example from: https://www.youtube.com/watch?v=9Lo7TFAkohE&ab_channel=OscarRobertson

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Bob Dave Frank Eve Carol
Bob Eve Carol Frank Dave Alice
Carol Bob Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

56

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Bob Dave Frank Eve Carol
Bob Eve Carol Frank Dave Alice
Carol Bob Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

57

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Bob Dave Frank Eve Carol
Bob Eve Carol Frank Dave Alice
Carol Bob Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

58

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Bob Dave Frank Eve Carol
Bob Eve Carol Frank Dave Alice
Carol Bob Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

59

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Bob Dave Frank Eve Carol
Bob Eve Carol Frank Dave Alice
Carol Bob Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

60

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Dave Frank Eve Carol
Bob Eve Carol Frank Dave
Carol Bob Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

61

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Dave Frank Eve Carol
Bob Eve Carol Frank Dave
Carol Bob Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

62

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Dave Frank Eve Carol
Bob Eve Carol Frank Dave
Carol Bob Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

63

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Dave Frank Eve Carol
Bob Eve Carol Frank Dave
Carol Bob Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

64

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Dave Frank Eve Carol
Bob Eve Carol Frank Dave
Carol Bob Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

65

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Dave Frank Eve Carol
Bob Eve Carol Frank Dave
Carol Bob Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

66

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Dave Frank Eve Carol
Bob Eve Frank Dave
Carol Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

67

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Dave Frank Eve Carol
Bob Eve Frank Dave
Carol Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

68

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Dave Frank Eve Carol
Bob Eve Frank Dave
Carol Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

69

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Dave Frank Eve Carol
Bob Eve Frank Dave
Carol Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

70

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Dave Frank Eve Carol
Bob Eve Frank Dave
Carol Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>

71

> > >

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to

RUNNING THE
ALGORITHM: PHASE 1

Alice Dave Frank
Bob Eve
Carol Frank Eve Alice Dave
Dave Carol Alice
Eve Bob
Frank Alice Dave Eve Carol

>

72

> > >
Remove anyone below the proposal offered to you

Green = Locked proposal from self
Blue = Locked proposal to self

RUNNING THE
ALGORITHM: PHASE 1

Alice Dave Frank
Bob Eve
Carol Frank Dave
Dave Carol Alice
Eve Bob
Frank Alice Carol

>

73

> > >
If you are not on someone else’s list, remove them from your list

Green = Locked proposal from self
Blue = Locked proposal to self

RUNNING THE
ALGORITHM: PHASE 1

Alice Dave Frank
Bob Eve
Carol Frank Dave
Dave Carol Alice
Eve Bob
Frank Alice Carol

>

74

> > >
If you are not on someone else’s list, remove them from your list

Green = Locked proposal from self
Blue = Locked proposal to self

1. a is first on b’s list iff b is last on a’s
2. a is not on b’s list iff

• b is not on a’s list
• a prefers last element on list to b

3. No reduced list is empty
Note 1: stable table with all lists length 1 is a stable matching
Note 2: any stable subtable of a stable table can be obtained
via rotation eliminations

STABLE TABLES

75

Phase 2!

Stable table has length 1 lists: return matching
Identify a rotation:

Eliminate it:
• bi rejects ai+1, and repeat rotation finding as necessary

If any list becomes empty: nonexistence
If the subtable hits length 1 lists: return matching

IRVING’S ALGORITHM:
PHASE 2

(a0,b0),(a1,b1),…,(ak-1,bk-1) such that:
• bi is ai’s second preference
• ai+1 is bi’s last preference
• a0 is bk-1‘s last preference (i.e., we have cycled)

76

RUNNING THE
ALGORITHM: PHASE 2

Alice Dave Frank

Bob Eve

Carol Frank Dave

Dave Carol Alice

Eve Bob

Frank Alice Carol

77

(a0,b0),(a1,b1),…,(ak-1,bk-1)
such that:
• bi is ai’s second

preference
• ai+1 is bi’s last

preference
• a0 is bk-1‘s last

preference

a0 b0

b0 a1

a1 b1

b1 a2

RUNNING THE
ALGORITHM: PHASE 2

Alice Dave Frank

Bob Eve

Carol Frank Dave

Dave Carol Alice

Eve Bob

Frank Alice Carol

78

a0 b0

b0 a1

a1 b1

b1 a2

Next: bi rejects ai+1

(a0,b0),(a1,b1),…,(ak-1,bk-1)
such that:
• bi is ai’s second

preference
• ai+1 is bi’s last

preference
• a0 is bk-1‘s last

preference

RUNNING THE
ALGORITHM: PHASE 2

Alice Dave Frank

Bob Eve

Carol Dave

Dave Carol Alice

Eve Bob

Frank Alice

79

a0 b0

b0

a1 b1

b1 a2

Next: bi rejects ai+1

(a0,b0),(a1,b1),…,(ak-1,bk-1)
such that:
• bi is ai’s second

preference
• ai+1 is bi’s last

preference
• a0 is bk-1‘s last

preference

RUNNING THE
ALGORITHM: PHASE 2

Alice Frank

Bob Eve

Carol Dave

Dave Carol

Eve Bob

Frank Alice

80

a0 b0

b0

a1 b1

b1

Next: bi rejects ai+1

(a0,b0),(a1,b1),…,(ak-1,bk-1)
such that:
• bi is ai’s second

preference
• ai+1 is bi’s last

preference
• a0 is bk-1‘s last

preference

Claim
Irving’s algorithm for the stable roommates

problem terminates in polynomial time –
specifically O(n2).

This requires some data structure considerations
• Naïve implementation of rotations is ~O(n3)

81

ONE-TO-MANY MATCHING
The hospitals/residents problem (aka college/students
problem aka admissions problem):
• Strict preference rankings from each side

• One side (hospitals) can accept q > 1 residents

Also introduced in [Gale and Shapley 1962]
Has seen lots of traction in the real world
• E.g., the National Resident Matching Program (NRMP)

• Other American, British, and Canadian medical labor markets

• Canadian lawyer labor markets

• Sororities

82

HISTORY OF THE NRMP

1940’s Fierce
competition,
eventual market
failure

1900-ish first medical internships

1951 First centralized clearing market

1970s More couples on the
market

1995 Crisis of
confidence

1996-7 Redesign completed and
implemented

[Roth 2002]

NRMP SIMPLIFIED:
A GALE-SHAPLEY APPROACH

84

Idea: Hospitals propose to as many doctors as they have open
spots. Doctors accept/reject as normal. Repeat until done.

Capacity 3

Capacity 1

Capacity 2

NRMP SIMPLIFIED:
A GALE-SHAPLEY APPROACH

85

Idea: Hospitals propose to as many doctors as they have open
spots. Doctors accept/reject as normal. Repeat until done.

Capacity 3

Capacity 1

Capacity 2

NRMP SIMPLIFIED:
A GALE-SHAPLEY APPROACH

86

Idea: Hospitals propose to as many doctors as they have open
spots. Doctors accept/reject as normal. Repeat until done.

Capacity 3

Capacity 2

Capacity 1

NRMP SIMPLIFIED:
A GALE-SHAPLEY APPROACH

87

Idea: Hospitals propose to as many doctors as they have open
spots. Doctors accept/reject as normal. Repeat until done.

Capacity 3

Capacity 2

Capacity 1

NRMP SIMPLIFIED:
A GALE-SHAPLEY APPROACH

88

Idea: Hospitals propose to as many doctors as they have open
spots. Doctors accept/reject as normal. Repeat until done.

Capacity 3

Capacity 2

Capacity 1

NRMP SIMPLIFIED:
A GALE-SHAPLEY APPROACH

89

Idea: Hospitals propose to as many doctors as they have open
spots. Doctors accept/reject as normal. Repeat until done.

Capacity 3

Capacity 2

Capacity 1

NRMP SIMPLIFIED:
A GALE-SHAPLEY APPROACH

90

Idea: Hospitals propose to as many doctors as they have open
spots. Doctors accept/reject as normal. Repeat until done.

This was the 1951 version of the market

Hospitals proposing: hospital-optimal, doctor-pessimal

Other idea: Doctors propose to their top hospital. Hospitals
accept/reject as normal up to their capacity. Repeat until done.

Doctor proposing: doctor-optimal, hospital pessimal

In NRMP: We ended up switching to this version.

TRUE NRMP: NOT SO
SIMPLE

91

We have four main matching variations:

• Couples: pairs who seek “nearby” positions

• Program types: specific “1st year programs” are prereqs for
specific “2nd year programs”.

• Applicants match with 2nd year programs AND one of the
prereq 1st year programs

• Capacities between 1st and 2nd year programs are linked
• Even slots: programs requiring an even number of residents

Like before, this breaks the theory.

HANDLING COUPLES

92

Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as
pairs.

HANDLING COUPLES

93

Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as
pairs.

HANDLING COUPLES

94

Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as
pairs.

HANDLING COUPLES

95

Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as
pairs.

HANDLING COUPLES

96

Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as
pairs.

HANDLING COUPLES

97

Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as
pairs.

HANDLING COUPLES

98

Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as
pairs.

HANDLING COUPLES

99

Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as
pairs.

HANDLING COUPLES

10
0

Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as
pairs.

HANDLING COUPLES

10
1

Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as
pairs.

HANDLING COUPLES

10
2

Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as
pairs.

Is this a stable matching?

HANDLING COUPLES

10
3

Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as
pairs.

No! Hospital A and Chloe are

HANDLING COUPLES

10
4

Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as
pairs.

Sometimes, there are no stable matches

COMPLEMENTARIES
EFFECTS

Simple Markets Markets with Complementaries

Optimal stable matchings exist No stable matching may exist. Even if
they do, we may not be able to
achieve an optimal-resident or hospital
solution

Same applicants matched, same
positions filled (Rural Hosp’ls Thm)

Different stable matchings may have
different applicants and positions filled

When applicant proposing is used a
dominant strategy for applicants is to
submit true preferences

No algorithm where a dominant
strategy for all agents to state true
preferences

EXPLORING
COMPLEMENTARIES
Are there a lot of variations?

• 4% couples
• 8-12% submit supplemental rank order lists (ROLs)
• 7% of programs have positions that revert to other positions if

unfilled
• Thoracic Surgery match is a simple match

Two (of many) questions to ask:
• Does a program optimal solution make the physicians happy?

• Can applicants act strategically?

THE PREEXISTING
ALGORITHM
Phase 1

• Program proposing
• Ignores most variations
• Couples hold onto offers

Phase 2
• Identifies instabilities

Phase 3
• Fixes instabilities one by one
• Sometimes couples propose to programs

When no match variations are present this produces
program-optimal stable matching (Thoracic Surgery)

THE NRMP ALGORITHM

𝐴𝐴 0 is the set of all
hospitals.
𝐴𝐴 1 is 𝐴𝐴 0 plus one
applicant
𝑀𝑀 1 is a matching found on
𝐴𝐴 1 .
𝐴𝐴 2 is 𝐴𝐴 1 plus one
applicant S(1)
𝑀𝑀 2 starts as 𝑀𝑀 1 , where
𝑆𝑆(2) proposes until
accepted, and 𝑆𝑆 1 may
have to re-propose.
…
𝑀𝑀 𝑘𝑘 starts as 𝑀𝑀 𝑘𝑘 − 1 ,
where 𝑆𝑆(𝑘𝑘) proposes until
accepted, any displaced
people may repropose, and
so on.

𝑨𝑨 𝟎𝟎

THE NRMP ALGORITHM

𝐴𝐴 0 is the set of all
hospitals.
𝐴𝐴 1 is 𝐴𝐴 0 plus one
applicant
𝑀𝑀 1 is a matching found on
𝐴𝐴 1 .
𝐴𝐴 2 is 𝐴𝐴 1 plus one
applicant S(1)
𝑀𝑀 2 starts as 𝑀𝑀 1 , where
𝑆𝑆(2) proposes until
accepted, and 𝑆𝑆 1 may
have to re-propose.
…
𝑀𝑀 𝑘𝑘 starts as 𝑀𝑀 𝑘𝑘 − 1 ,
where 𝑆𝑆(𝑘𝑘) proposes until
accepted, any displaced
people may repropose, and
so on.

𝑨𝑨 𝟎𝟎
𝑨𝑨 𝟏𝟏

THE NRMP ALGORITHM

𝐴𝐴 0 is the set of all
hospitals.
𝐴𝐴 1 is 𝐴𝐴 0 plus one
applicant
𝑀𝑀 1 is a matching found on
𝐴𝐴 1 .
𝐴𝐴 2 is 𝐴𝐴 1 plus one
applicant S(1)
𝑀𝑀 2 starts as 𝑀𝑀 1 , where
𝑆𝑆(2) proposes until
accepted, and 𝑆𝑆 1 may
have to re-propose.
…
𝑀𝑀 𝑘𝑘 starts as 𝑀𝑀 𝑘𝑘 − 1 ,
where 𝑆𝑆(𝑘𝑘) proposes until
accepted, any displaced
people may repropose, and
so on.

𝑨𝑨 𝟎𝟎
𝑨𝑨 𝟏𝟏

THE NRMP ALGORITHM

𝐴𝐴 0 is the set of all
hospitals.
𝐴𝐴 1 is 𝐴𝐴 0 plus one
applicant
𝑀𝑀 1 is a matching found on
𝐴𝐴 1 .
𝐴𝐴 2 is 𝐴𝐴 1 plus one
applicant S(1)
𝑀𝑀 2 starts as 𝑀𝑀 1 , where
𝑆𝑆(2) proposes until
accepted, and 𝑆𝑆 1 may
have to re-propose.
…
𝑀𝑀 𝑘𝑘 starts as 𝑀𝑀 𝑘𝑘 − 1 ,
where 𝑆𝑆(𝑘𝑘) proposes until
accepted, any displaced
people may repropose, and
so on.

𝑨𝑨 𝟎𝟎
𝑨𝑨 𝟏𝟏
𝑨𝑨 𝟐𝟐

THE NRMP ALGORITHM

𝐴𝐴 0 is the set of all
hospitals.
𝐴𝐴 1 is 𝐴𝐴 0 plus one
applicant
𝑀𝑀 1 is a matching found on
𝐴𝐴 1 .
𝐴𝐴 2 is 𝐴𝐴 1 plus one
applicant S(1)
𝑀𝑀 2 starts as 𝑀𝑀 1 , where
𝑆𝑆(2) proposes until
accepted, and 𝑆𝑆 1 may
have to re-propose.
…
𝑀𝑀 𝑘𝑘 starts as 𝑀𝑀 𝑘𝑘 − 1 ,
where 𝑆𝑆(𝑘𝑘) proposes until
accepted, any displaced
people may repropose, and
so on.

𝑨𝑨 𝟎𝟎
𝑨𝑨 𝟏𝟏
𝑨𝑨 𝟐𝟐

THE NRMP ALGORITHM

𝐴𝐴 0 is the set of all
hospitals.
𝐴𝐴 1 is 𝐴𝐴 0 plus one
applicant
𝑀𝑀 1 is a matching found on
𝐴𝐴 1 .
𝐴𝐴 2 is 𝐴𝐴 1 plus one
applicant S(1)
𝑀𝑀 2 starts as 𝑀𝑀 1 , where
𝑆𝑆(2) proposes until
accepted, and 𝑆𝑆 1 may
have to re-propose.
…
𝑀𝑀 𝑘𝑘 starts as 𝑀𝑀 𝑘𝑘 − 1 ,
where 𝑆𝑆(𝑘𝑘) proposes until
accepted, any displaced
people may repropose, and
so on.

𝑨𝑨 𝟎𝟎
𝑨𝑨 𝟏𝟏
𝑨𝑨 𝟐𝟐

…

𝑨𝑨 𝟑𝟑

THE NRMP ALGORITHM:
COUPLES AND PREREQS
Couples:
• When a person is displaced, so is their partner. As a couple, they

propose down their list.
• A new empty slot gets opened by partner. Add this to “program

stack”.
Prerequisite programs:
• If a displaced person loses 2 slots, add slot to program stack.
• If proposer is accepted by such a program, then continue applying

to prerequisite programs.
• This may displace 2 people. Just process them one after the

other.
Once applicants are done, remove programs from program stack one
by one. Allow applicants with potential instabilities to propose again.

Happens
at the end

of each
iteration

THE NRMP ALGORITHM:
EVEN/ODD AND REVERSIONS
Even/Odd:
• Remove a single applicant as necessary.

• Displaced people can then continue to propose.

Reversions:
• All hospitals decide how many slots to revert for each program.

• Empty slots are added to the program stack.

• We again process the program stack as before.

Happens
at the end

of the
algorithm

LOOPS IN THE
APPLICANT PROPOSING
ALGORITHM

…
Loops can be detected. Then either:

• We can resolve by rerandomizing processing orders on stacks

• They imply no stability exists. This is rare.

SEQUENCE CHANGES
Ran computational experiments

Differences in matches was extremely small and did not
appear to be systematic

Did effect number of loops
• Fewest when couples where introduced last

RESULTS OF THE NEW
ALGORITHM

Would be
zero by
Rural

Hosp’ls,
still small
though

0.1% of
applicants
affected,
0.5% of

programs
affected

Most
affected

applicants
preferred
new, most
affected

programs
did not

IS THE CHANGE
WORTH IT?
0.1% of applicants affected
Most of those affected prefer the new algorithm

0.5% of programs affected
Most of those affected prefer the old algorithm

This does not imply the associated change in welfare is small
• Large increase for affected applicants
• Small decrease for the affected programs

STRATEGIC BEHAVIOR
OF PARTICIPANTS

STRATEGIC BEHAVIOR
OF PROGRAMS

	Mechanism Design
	This class:�Matching & Maybe the NRMP
	Overview of this lecture
	Matching without incentives
	Stable Matching problem
	Example preference profiles
	Example preference profiles
	Example matching #1
	Example matching #1
	Example matching #2
	Example matching #2
	Throwback Monday: Int. Linear Programs
	Throwback Monday: Int. Linear Programs
	Some questions
	Gale-Shapley [1962]
	Gale-Shapley [1962]
	Running GS
	Running GS
	Running GS
	Running GS
	Running GS
	Running GS
	Running GS
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Recap: Some questions
	Horse/Jockey optimality/pessimality
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Recap: Some questions
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Incentive issues
	Slide Number 43
	Slide Number 44
	Extensions to stable Matching
	Imbalance [Ashlagi et al. 2013]
	Imbalance [Ashlagi et al. 2013]
	Imbalance [Ashlagi et al. 2013]
	Online arrival [Khuller et al. 1993]
	Incomplete prefs [Manlove et al. 2002]
	Non-bipartite graph …?
	Is this different than Bipartite stable Matching?
	Hopeless?
	Irving’s algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Running the algorithm: Phase 1
	Stable tables
	Irving’s algorithm: Phase 2
	Running the algorithm: Phase 2
	Running the algorithm: Phase 2
	Running the algorithm: Phase 2
	Running the algorithm: Phase 2
	Slide Number 81
	One-to-many matching
	History of the NRMP
	NRMP Simplified:�A Gale-Shapley Approach
	NRMP Simplified:�A Gale-Shapley Approach
	NRMP Simplified:�A Gale-Shapley Approach
	NRMP Simplified:�A Gale-Shapley Approach
	NRMP Simplified:�A Gale-Shapley Approach
	NRMP Simplified:�A Gale-Shapley Approach
	NRMP Simplified:�A Gale-Shapley Approach
	True NRMP: Not so simple
	Handling Couples
	Handling Couples
	Handling Couples
	Handling Couples
	Handling Couples
	Handling Couples
	Handling Couples
	Handling Couples
	Handling Couples
	Handling Couples
	Handling Couples
	Handling Couples
	Handling Couples
	Complementaries Effects
	Exploring Complementaries
	The Preexisting Algorithm
	The NRMP Algorithm�
	The NRMP Algorithm�
	The NRMP Algorithm�
	The NRMP Algorithm�
	The NRMP Algorithm�
	The NRMP Algorithm�
	The NRMP Algorithm: Couples and Prereqs
	The NRMP Algorithm: Even/odd and reversions
	Loops in the Applicant Proposing Algorithm
	Sequence Changes
	Results of the New Algorithm
	Is the Change Worth It?
	Strategic Behavior of Participants
	Strategic Behavior of Programs

