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THIS CLASS:
MATCHING & MAYBE THE NRMP
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OVERVIEW OF THIS 
LECTURE
Stable marriage problem

• Bipartite, one vertex to one vertex

Stable roommates problem
• Not bipartite, one vertex to one vertex 

Hospitals/Residents problem
• Bipartite, one vertex to many vertices
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MATCHING WITHOUT 
INCENTIVES
Given a graph G = (V, E), a matching is any set of pairwise non-
adjacent edges
• No two edges share the same vertex
• Classical combinatorial optimization problem
Bipartite matching:
• Bipartite graph G = (U, V, E)
• Max cardinality/weight matching found easily – O(VE) and better

• E.g., through network flow, Hungarian algorithm, etc
Matching in general graphs:
• Also PTIME via Edmond’s

algorithm – O(V2E) and better
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STABLE MATCHING 
PROBLEM
Complete bipartite graph with equal sides:

• n horses and n jockeys
Each horse has a strict, complete preference ordering over 
jockeys, and vice versa

Want: a stable matching

Stable matching: No 
unmatched horse and 

jockey both prefer 
each other to their 
current matches
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Thanks Prof. Xanda Schofield for the example!



EXAMPLE PREFERENCE 
PROFILES

Alice
Bob
Eve

Donkey
Spirit
Swiftwind

> >
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EXAMPLE PREFERENCE 
PROFILES

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >
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EXAMPLE MATCHING #1
Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

Is this a stable matching?
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EXAMPLE MATCHING #1
Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

No.
Alice and Spirit form a blocking pair.
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EXAMPLE MATCHING #2
Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

What about this matching?
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EXAMPLE MATCHING #2
Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

Yes!
(Swiftwind and Eve are unhappy, but helpless.)
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THROWBACK MONDAY: 
INT. LINEAR PROGRAMS
Can we formulate this as a linear program?

Spoiler: Yes we can
Another spoiler: You’re going to do it!

What are our variables?
𝒙𝒙𝒉𝒉𝒉𝒉 for each horse 𝒉𝒉∈{1, … ,𝒏𝒏} and jockey 𝒋𝒋∈{1, … ,𝒏𝒏}

How are they bounded?
𝒙𝒙𝒉𝒉𝒉𝒉 ∈ {𝟎𝟎,𝟏𝟏}, indicating if the horse and jockey are matched

How do we ensure everyone is only matched once?
∑𝒋𝒋∈{𝟏𝟏,…,𝒏𝒏}𝒙𝒙𝒉𝒉𝒉𝒉 ≤ 𝟏𝟏 for all 𝒉𝒉∈{1, … ,𝒏𝒏} (covers horses)
∑𝒉𝒉∈{𝟏𝟏,…,𝒏𝒏}𝒙𝒙𝒉𝒉𝒉𝒉 ≤ 𝟏𝟏 for all 𝒋𝒋∈{1, … ,𝒏𝒏} (covers jockeys)

How do we ensure stability?
∑𝒋𝒋𝒋>𝒉𝒉𝒋𝒋 𝒙𝒙𝒉𝒉𝒉𝒉′ + ∑𝒉𝒉𝒉>𝒋𝒋𝒉𝒉 𝒙𝒙𝒉𝒉′𝒋𝒋 + 𝒙𝒙𝒉𝒉𝒉𝒉 ≥ 𝟏𝟏 for all 𝒉𝒉,𝒋𝒋∈{1, … ,𝒏𝒏}

12𝒉𝒉 prefers its match to 𝒋𝒋 𝒋𝒋 prefers its match to 𝒉𝒉 𝒋𝒋 is matched to 𝒉𝒉OROR



THROWBACK MONDAY: 
INT. LINEAR PROGRAMS
Optimize: Nothing

∑𝒋𝒋∈{𝟏𝟏,…,𝒏𝒏}𝒙𝒙𝒉𝒉𝒋𝒋 ≤ 𝟏𝟏 for all 𝒉𝒉∈{1, … ,𝒏𝒏}

∑𝒉𝒉∈{𝟏𝟏,…,𝒏𝒏}𝒙𝒙𝒉𝒉𝒉𝒉 ≤ 𝟏𝟏 for all 𝒋𝒋∈{1, … ,𝒏𝒏}

∑𝒋𝒋𝒋>𝒉𝒉𝒋𝒋 𝒙𝒙𝒉𝒉𝒉𝒉𝒉 + ∑𝒉𝒉𝒉>𝒋𝒋𝒉𝒉 𝒙𝒙𝒉𝒉𝒉𝒉𝒉 + 𝒙𝒙𝒉𝒉𝒉𝒉 ≥ 𝟏𝟏 for all 𝒉𝒉,𝒋𝒋∈{1, … ,𝒏𝒏}

𝒙𝒙𝒉𝒉𝒉𝒉 ∈ {𝟎𝟎,𝟏𝟏} for all 𝒉𝒉,𝒋𝒋∈{1, … ,𝒏𝒏}

What does this give us?
• If there is a stable matching, this finds one
• This might take exponential time!
• Open question: Can there exist no stable matching?
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Does a stable solution to the marriage problem always exist?
Can we compute such a solution efficiently?
Can we compute the best stable solution efficiently?

SOME QUESTIONS

Hmm …

Lloyd Shapley David Gale

Hmm …
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GALE-SHAPLEY [1962]
Idea: men propose to women
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GALE-SHAPLEY [1962]
Idea: jockeys “propose” to horses
1. Everyone is unmatched
2. While some jockey 𝒋𝒋 is unmatched:

• 𝒉𝒉 ≔ 𝒋𝒋’s most-preferred horse to whom 
they have not proposed yet

• If 𝒉𝒉 is also unmatched:
• 𝒉𝒉 and 𝒋𝒋 are engaged

• Else if 𝒉𝒉 prefers 𝒋𝒋 to their current match 𝒋𝒋′
• 𝒉𝒉 and 𝒋𝒋 are engaged, 𝒋𝒋′ is unmatched

• Else: 𝒉𝒉 rejects 𝒋𝒋
3. Return matched pairs
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RUNNING GS

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >
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RUNNING GS

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >
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RUNNING GS

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >
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RUNNING GS

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >
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RUNNING GS

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >
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RUNNING GS

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >
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RUNNING GS

Alice Donkey Spirit Swiftwind
Bob Spirit Donkey Swiftwind
Eve Donkey Spirit Swiftwind

Donkey Bob Alice Eve
Spirit Alice Bob Eve
Swiftwind Alice Bob Eve

> >
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Claim
GS terminates in polynomial time (at most n2

iterations of the outer loop)

Proof:
• Each iteration, one jockey proposes to 

someone to whom they have never proposed 
before

• n horses, n jockeys  n×n possible events

(Can tighten a bit to n(n - 1) + 1 iterations.)
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Claim
GS results in a perfect matching

Proof by contradiction:
• Suppose BWOC that 𝒋𝒋 is unmatched at 

termination
• n horses, n jockeys  𝒉𝒉 is unmatched, too
• Once a horse is proposed to, they are matched 

and never unmatched; they only swap 
partners.  Thus, nobody proposed to 𝒉𝒉

• 𝒋𝒋 proposed to everyone (by def. of GS):  ><
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Claim
GS results in a stable matching (i.e., there 

are no blocking pairs)

Proof by contradiction (1):
• Assume 𝒋𝒋 and 𝒉𝒉 form a 

blocking pair

Case #1: 𝒋𝒋 never proposed to 𝒉𝒉
• GS: jockeys propose in 

order of preferences
• 𝒋𝒋 prefers current match 𝒉𝒉′ >

𝒉𝒉 (since it proposed to 𝐡𝐡′
and not 𝐡𝐡)

•  𝒋𝒋 and 𝒉𝒉 are not blocking
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𝒋𝒋 𝒉𝒉

𝒋𝒋 and 𝒉𝒉 are not matched
𝒋𝒋 and 𝒉𝒉𝒉 are matched 
𝒋𝒋𝒋 and 𝒉𝒉 are matched

𝒋𝒋𝒋 𝒉𝒉𝒉

𝒋𝒋 prefers 𝒉𝒉 to 𝒉𝒉′
𝒉𝒉 prefers 𝒋𝒋 to 𝒋𝒋′

𝒋𝒋s proposals: 

…

𝒉𝒉𝒉

…

𝒉𝒉

…



Claim
GS results in a stable matching (i.e., there 

are no blocking pairs)

Proof by contradiction (2):
Case #2: 𝒋𝒋 proposed to 𝒉𝒉
• 𝒉𝒉 rejected 𝒋𝒋 at some point
• GS: horses only reject for 

better jockeys
• 𝒉𝒉 prefers current partner 

𝒋𝒋′ > 𝒋𝒋
•  𝒋𝒋 and 𝒉𝒉 are not blocking

Case #1 and #2 exhaust space.  
><
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𝒋𝒋 𝒉𝒉

𝒋𝒋 and 𝒉𝒉 are not matched
𝒋𝒋 and 𝒉𝒉𝒉 are matched 
𝒋𝒋𝒋 and 𝒉𝒉 are matched

𝒋𝒋𝒋 𝒉𝒉𝒉

𝒋𝒋 prefers 𝒉𝒉 to 𝒉𝒉′
𝒉𝒉 prefers 𝒋𝒋 to 𝒋𝒋′

𝒉𝒉 proposers: 𝒉𝒉 rejections 

… …

𝒋𝒋 …

… …

𝒋𝒋𝒋 𝒋𝒋

… …



Does a stable solution to the marriage problem always exist?

Can we compute such a solution efficiently?

Can we compute the best stable solution efficiently?

RECAP: SOME QUESTIONS

We’ll look at a specific notion of “the best” –
optimality with respect to one side of the market
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HORSE/JOCKEY 
OPTIMALITY/PESSIMALITY
Let S be the set of stable matchings

𝒋𝒋 is a valid partner of 𝒉𝒉 (and vice versa) if there exists some 
stable matching 𝑆𝑆 in S where they are paired

A matching is jockey optimal (resp. horse optimal) if each 
jockey (resp. horse) receives their best valid partner

• Is this a perfect matching?  Stable?
A matching is jockey pessimal (resp. horse pessimal) if each 
jockey (resp. horse) receives their worst valid partner
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Claim
GS – with the jockey proposing – results in a 

jockey-optimal matching

Proof by contradiction (1):
• Jockey propose in order 

at least one jockey was 
rejected by a valid partner

• Let 𝒋𝒋 and 𝒉𝒉 be the first such 
reject in 𝑆𝑆

• Let 𝑆𝑆𝑆 be a stable matching 
with 𝒋𝒋, 𝒉𝒉 paired

(𝑆𝑆𝑆 exists by def. of valid)
• 𝒋𝒋 is rejected in 𝑆𝑆 because 𝒉𝒉

chose some 𝒋𝒋′ > 𝒋𝒋
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𝒋𝒋 𝒉𝒉

𝒋𝒋 and 𝒉𝒉 are not matched in 
𝑆𝑆, they are valid partners

𝑆𝑆 is stable



Claim
GS – with the jockey proposing – results in a 

jockey-optimal matching

Proof by contradiction (1):
• Jockey propose in order 

at least one jockey was 
rejected by a valid partner

• Let 𝒋𝒋 and 𝒉𝒉 be the first such 
reject in 𝑆𝑆

• Let 𝑆𝑆𝑆 be a stable matching 
with 𝒋𝒋, 𝒉𝒉 paired

(𝑆𝑆𝑆 exists by def. of valid)
• 𝒋𝒋 is rejected in 𝑆𝑆 because 𝒉𝒉

chose some 𝒋𝒋′ > 𝒋𝒋
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𝒋𝒋 𝒉𝒉

𝒋𝒋 and 𝒉𝒉 are not matched in 
𝑆𝑆, they are valid partners
𝒋𝒋 and 𝒉𝒉 are matched in 𝑆𝑆′

𝑆𝑆𝑆

𝑆𝑆 is stable
𝑆𝑆′ is stable



Claim
GS – with the jockey proposing – results in a 

jockey-optimal matching

Proof by contradiction (1):
• Jockey propose in order 

at least one jockey was 
rejected by a valid partner

• Let 𝒋𝒋 and 𝒉𝒉 be the first such 
reject in 𝑆𝑆

• Let 𝑆𝑆𝑆 be a stable matching 
with 𝒋𝒋, 𝒉𝒉 paired

(𝑆𝑆𝑆 exists by def. of valid)
• 𝒋𝒋 is rejected in 𝑆𝑆 because 𝒉𝒉

chose some 𝒋𝒋′ > 𝒋𝒋
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𝒋𝒋 𝒉𝒉

𝒋𝒋 and 𝒉𝒉 are not matched in 
𝑆𝑆, they are valid partners
𝒋𝒋 and 𝒉𝒉 are matched in 𝑆𝑆𝑆
𝒋𝒋𝒋 and 𝒉𝒉 are matched in 𝑆𝑆

𝒋𝒋𝒋
𝑆𝑆 is stable
𝑆𝑆𝑆 is stable

𝑆𝑆
𝑆𝑆𝑆



Claim
GS – with the jockey proposing – results in a 

jockey-optimal matching

Proof by contradiction (2):
• Let 𝒉𝒉′ be match of 𝒋𝒋′ in 𝑆𝑆′
• 𝒋𝒋′ was not rejected by valid 

partner in 𝑆𝑆 before 𝒋𝒋 was 
rejected by 𝒉𝒉 (by assump.)
 𝒋𝒋′ prefers 𝒉𝒉 to 𝒉𝒉′

• Know 𝒉𝒉 prefers 𝒋𝒋′ over 𝒋𝒋, 
their jockey in 𝑆𝑆′
 𝒋𝒋′ and 𝒉𝒉 form a blocking 

pair in 𝑆𝑆′ ><
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𝒋𝒋 𝒉𝒉

𝒋𝒋 and 𝒉𝒉 are not matched in 
𝑆𝑆, they are valid partners
𝒋𝒋 and 𝒉𝒉 are matched in 𝑆𝑆𝑆
𝒋𝒋𝒋 and 𝒉𝒉 are matched in 𝑆𝑆

𝒋𝒋𝒋 𝒉𝒉𝒉
𝑆𝑆 is stable
𝑆𝑆𝑆 is stable

𝑆𝑆
𝑆𝑆𝑆

𝑆𝑆



Claim
GS – with the jockey proposing – results in a 

jockey-optimal matching

Proof by contradiction (2):
• Let 𝒉𝒉′ be match of 𝒋𝒋′ in 𝑆𝑆′
• 𝒋𝒋′ was not rejected by valid 

partner in 𝑆𝑆 before 𝒋𝒋 was 
rejected by 𝒉𝒉 (by assump.)
 𝒋𝒋′ prefers 𝒉𝒉 to 𝒉𝒉′

• Know 𝒉𝒉 prefers 𝒋𝒋′ over 𝒋𝒋, 
their jockey in 𝑆𝑆′
 𝒋𝒋′ and 𝒉𝒉 form a blocking 

pair in 𝑆𝑆′ ><
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𝒋𝒋 𝒉𝒉

𝒋𝒋 and 𝒉𝒉 are not matched in 
𝑆𝑆, they are valid partners
𝒋𝒋 and 𝒉𝒉 are matched in 𝑆𝑆𝑆
𝒋𝒋𝒋 and 𝒉𝒉 are matched in 𝑆𝑆
𝒋𝒋′ and 𝒉𝒉′ are matched in 𝑆𝑆′

𝒋𝒋𝒋 𝒉𝒉𝒉
𝑆𝑆 is stable
𝑆𝑆𝑆 is stable

𝑆𝑆
𝑆𝑆𝑆

𝑆𝑆𝑆

Can’t come 
before 𝒉𝒉 since 
𝒋𝒋𝒋 and 𝒉𝒉𝒉 are 
valid partners

𝒋𝒋𝒋 proposals: 

…

𝒉𝒉

…

𝒉𝒉𝒉

…



Claim
GS – with the jockey proposing – results in a 

jockey-optimal matching

Proof by contradiction (2):
• Let 𝒉𝒉′ be match of 𝒋𝒋′ in 𝑆𝑆′
• 𝒋𝒋′ was not rejected by valid 

partner in 𝑆𝑆 before 𝒋𝒋 was 
rejected by 𝒉𝒉 (by assump.)
 𝒋𝒋′ prefers 𝒉𝒉 to 𝒉𝒉′

• Know 𝒉𝒉 prefers 𝒋𝒋′ over 𝒋𝒋, 
their jockey in 𝑆𝑆′
 𝒋𝒋′ and 𝒉𝒉 form a blocking 

pair in 𝑆𝑆′ ><
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𝒋𝒋 𝒉𝒉

𝒋𝒋 and 𝒉𝒉 are not matched in 
𝑆𝑆, they are valid partners
𝒋𝒋 and 𝒉𝒉 are matched in 𝑆𝑆𝑆
𝒋𝒋𝒋 and 𝒉𝒉 are matched in 𝑆𝑆
𝒋𝒋′ and 𝒉𝒉′ are matched in 𝑆𝑆′

𝒋𝒋𝒋 𝒉𝒉𝒉
𝑆𝑆 is stable
𝑆𝑆𝑆 is stable

𝑆𝑆
𝑆𝑆𝑆

𝑆𝑆𝑆

𝒋𝒋𝒋 proposals: 

…

𝒉𝒉

…

𝒉𝒉𝒉

…

𝒉𝒉 proposers: 

…

𝒋𝒋

…

𝒋𝒋′

…



Does a stable solution to the marriage problem always exist?

Can we compute such a solution efficiently?

Can we compute the best stable solution efficiently?

RECAP: SOME 
QUESTIONS

For one side of the market.  What about the other 
side?

*

36



Claim
GS – with the jockey proposing – results in a 

horse-pessimal matching

Proof by contradiction:
• 𝒋𝒋 and 𝒉𝒉 matched in 𝑆𝑆, 𝒋𝒋 is 

not worst valid 
•  exists stable 𝑆𝑆′ with 𝒉𝒉

paired to 𝒋𝒋′, where 𝒉𝒉
prefers to 𝒋𝒋 to 𝒋𝒋′

• Let 𝒉𝒉′ be partner of 𝒋𝒋 in 𝑆𝑆′
• 𝒋𝒋 prefers to 𝒉𝒉 to 𝒉𝒉′ (by 

jockey-optimality of 𝑆𝑆)
•  𝒋𝒋 and 𝒉𝒉 form blocking 

pair in 𝑆𝑆’  ><
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𝒋𝒋 𝒉𝒉

𝒋𝒋 and 𝒉𝒉 are matched in 𝑆𝑆
𝒋𝒋𝒋 and 𝒉𝒉 are matched in 𝑆𝑆′
𝒋𝒋 and 𝒉𝒉′ are matched in 𝑆𝑆′

𝑆𝑆



Claim
GS – with the jockey proposing – results in a 

horse-pessimal matching

Proof by contradiction:
• 𝒋𝒋 and 𝒉𝒉 matched in 𝑆𝑆, 𝒋𝒋 is 

not worst valid 
•  exists stable 𝑆𝑆′ with 𝒉𝒉

paired to 𝒋𝒋′, where 𝒉𝒉
prefers to 𝒋𝒋 to 𝒋𝒋′

• Let 𝒉𝒉′ be partner of 𝒋𝒋 in 𝑆𝑆′
• 𝒋𝒋 prefers to 𝒉𝒉 to 𝒉𝒉′ (by 

jockey-optimality of 𝑆𝑆)
•  𝒋𝒋 and 𝒉𝒉 form blocking 

pair in 𝑆𝑆’  ><

38

𝒋𝒋 𝒉𝒉

𝒋𝒋 and 𝒉𝒉 are matched in 𝑆𝑆
𝒋𝒋𝒋 and 𝒉𝒉 are matched in 𝑆𝑆′
𝒋𝒋 and 𝒉𝒉′ are matched in 𝑆𝑆′

𝒋𝒋𝒋
𝑆𝑆𝑆

𝑆𝑆



Claim
GS – with the jockey proposing – results in a 

horse-pessimal matching

Proof by contradiction:
• 𝒋𝒋 and 𝒉𝒉 matched in 𝑆𝑆, 𝒋𝒋 is 

not worst valid 
•  exists stable 𝑆𝑆′ with 𝒉𝒉

paired to 𝒋𝒋′, where 𝒉𝒉
prefers to 𝒋𝒋 to 𝒋𝒋′

• Let 𝒉𝒉′ be partner of 𝒋𝒋 in 𝑆𝑆′
• 𝒋𝒋 prefers to 𝒉𝒉 to 𝒉𝒉′ (by 

jockey-optimality of 𝑆𝑆)
•  𝒋𝒋 and 𝒉𝒉 form blocking 

pair in 𝑆𝑆’  ><

39

𝒋𝒋 𝒉𝒉

𝒋𝒋 and 𝒉𝒉 are matched in 𝑆𝑆
𝒋𝒋𝒋 and 𝒉𝒉 are matched in 𝑆𝑆′
𝒋𝒋 and 𝒉𝒉′ are matched in 𝑆𝑆′

𝒋𝒋𝒋 𝒉𝒉𝒉
𝑆𝑆𝑆

𝑆𝑆

𝑆𝑆𝑆



Claim
GS – with the jockey proposing – results in a 

horse-pessimal matching

Proof by contradiction:
• 𝒋𝒋 and 𝒉𝒉 matched in 𝑆𝑆, 𝒋𝒋 is 

not worst valid 
•  exists stable 𝑆𝑆′ with 𝒉𝒉

paired to 𝒋𝒋′, where 𝒉𝒉
prefers to 𝒋𝒋 to 𝒋𝒋′

• Let 𝒉𝒉′ be partner of 𝒋𝒋 in 𝑆𝑆′
• 𝒋𝒋 prefers to 𝒉𝒉 to 𝒉𝒉′ (by 

jockey-optimality of 𝑆𝑆)
•  𝒋𝒋 and 𝒉𝒉 form blocking 

pair in 𝑆𝑆’  ><
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INCENTIVE ISSUES
Can either side benefit by misreporting?

• (Slight extension for rest of talk: participants can mark possible 
matches as unacceptable – a form of preference list truncation)

Any algorithm that yields a jockey-
(horse-)optimal matching


truthful revelation by jockeys (horses) 

is dominant strategy [Roth 1982]
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Alice Donkey Spirit
Bob Spirit Donkey

Donkey Bob Alice
Spirit Alice Bob

In GS with jockey proposing, horses 
can benefit by misreporting preferences

Alice Donkey Spirit
Bob Spirit Donkey

Donkey Bob Alice
Spirit Alice Bob

Truthful reporting

Strategic reporting

Alice Donkey Spirit
Bob Spirit Donkey

Donkey Bob 

Spirit Alice Bob

Alice Donkey Spirit
Bob Spirit Donkey

Donkey Bob 

Spirit Alice Bob
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Claim
There is no matching mechanism that:

1. is strategy proof (for both sides); and
2. always results in a stable outcome (given 

revealed preferences)
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EXTENSIONS TO STABLE MATCHING
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IMBALANCE [ASHLAGI ET AL. 2013]

What if we have n jockeys and n’ ≠ n horses?
How does this affect participants?  Core size?

• Being on short side of 
market: good!

• W.h.p., short side get 
rank ~log(n)

• … long side gets
rank ~random

# horses held constant at n’ = 40
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IMBALANCE [ASHLAGI ET AL. 2013]

Not many stable matchings with even small imbalances in the 
market
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IMBALANCE [ASHLAGI ET AL. 2013]

“Rural hospital theorem” [Roth 1986]:
• The set of jockeys and horses that are unmatched is the 

same for all stable matchings
Assume n jockeys, n+1 horses

• One horse 𝒉𝒉 unmatched in all stable matchings
•  Drop 𝒉𝒉, same stable matchings

Take stable matchings with n horses
• Stay stable when we add in 𝒉𝒉 if no jockeys prefer 𝒉𝒉 to their 

current match
•  average rank of jockey’s matches is low
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ONLINE ARRIVAL [KHULLER ET AL. 1993]

Random preferences, jockeys arrive over time, once matched 
nobody can switch
Algorithm: match 𝒋𝒋 to highest-ranked free 𝒉𝒉

• On average, O(nlog(n)) unstable pairs
No deterministic or randomized algorithm can do better than 
Ω(n2) unstable pairs!

• Not better with randomization 
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INCOMPLETE PREFS
[MANLOVE ET AL. 2002]

Before: complete + strict preferences
• Easy to compute, lots of nice properties

Incomplete preferences
• May exist: stable matchings of different sizes

Everything becomes hard!
• Finding max or min cardinality stable matching
• Determining if < 𝒋𝒋, 𝒉𝒉 > are stable
• Finding/approx. finding “egalitarian” matching
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NON-BIPARTITE GRAPH …?
Matching is defined on general graphs:

• “Set of edges, each vertex included at most once”
The stable roommates problem is bipartite stable matching 
generalized to any graph
Each vertex ranks all n-1 other vertices

• (Variations with/without truncation)
Same notion of stability
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IS THIS DIFFERENT THAN 
BIPARTITE STABLE MATCHING?

Alana Brian Cynthia Dracula
Brian Cynthia Alana Dracula
Cynthia Alana Brian Dracula
Dracula (Anyone) (Anyone) (Anyone)

No stable matching exists!
Anyone paired with Dracula (i) prefers 

some other v and (ii) is preferred by that v
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HOPELESS?
Can we build an algorithm that:

• Finds a stable matching; or
• Reports nonexistence

… In polynomial time?

Yes! [Irving 1985]
• Builds on Gale-Shapley ideas and

work by McVitie and Wilson [1971]

Hmm …
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IRVING’S ALGORITHM: 
PHASE 1
Idea: Run an algorithm very similar to Gale-Shapley
• Everyone proposes to everyone
• Individuals hold 2 types of temporary matches: matches where 

they propose and matches where they are proposed to (the 
former will be weakly better)

After this step: one person is unmatched  nonexistence
Else: create a reduced set of preferences

• a holds proposal from b a truncates all x after b
• For each removed x, also remove a from x’s preferences
• Note: b at end of a’s list  a at start of b’s list

If any reduced set is empty: nonexistence
Else: this is a “stable table” – continue to Phase 2
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RUNNING THE 
ALGORITHM: PHASE 1

Alice Bob Dave Frank Eve Carol
Bob Eve Carol Frank Dave Alice
Carol Bob Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>
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> > >
Example from: https://www.youtube.com/watch?v=9Lo7TFAkohE&ab_channel=OscarRobertson

Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to
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>
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Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to
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RUNNING THE 
ALGORITHM: PHASE 1

Alice Dave Frank Eve Carol
Bob Eve Frank Dave
Carol Frank Eve Alice Dave
Dave Carol Alice Frank Bob Eve
Eve Bob Alice Frank Carol Dave
Frank Alice Dave Eve Carol Bob

>
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Green = Locked proposal from self
Blue = Locked proposal to self
Yellow = Currently proposing
Orange = Currently being proposed to



RUNNING THE 
ALGORITHM: PHASE 1

Alice Dave Frank
Bob Eve
Carol Frank Eve Alice Dave
Dave Carol Alice
Eve Bob
Frank Alice Dave Eve Carol

>
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> > >
Remove anyone below the proposal offered to you

Green = Locked proposal from self
Blue = Locked proposal to self



RUNNING THE 
ALGORITHM: PHASE 1

Alice Dave Frank
Bob Eve
Carol Frank Dave
Dave Carol Alice
Eve Bob
Frank Alice Carol

>
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> > >
If you are not on someone else’s list, remove them from your list

Green = Locked proposal from self
Blue = Locked proposal to self



RUNNING THE 
ALGORITHM: PHASE 1

Alice Dave Frank
Bob Eve
Carol Frank Dave
Dave Carol Alice
Eve Bob
Frank Alice Carol

>
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> > >
If you are not on someone else’s list, remove them from your list

Green = Locked proposal from self
Blue = Locked proposal to self



1. a is first on b’s list iff b is last on a’s
2. a is not on b’s list iff

• b is not on a’s list
• a prefers last element on list to b

3. No reduced list is empty
Note 1: stable table with all lists length 1 is a stable matching
Note 2: any stable subtable of a stable table can be obtained 
via rotation eliminations

STABLE TABLES
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Phase 2!



Stable table has length 1 lists: return matching
Identify a rotation:

Eliminate it:
• bi rejects ai+1, and repeat rotation finding as necessary

If any list becomes empty: nonexistence
If the subtable hits length 1 lists: return matching

IRVING’S ALGORITHM: 
PHASE 2

(a0,b0),(a1,b1),…,(ak-1,bk-1) such that:
• bi is ai’s second preference 
• ai+1 is bi’s last preference
• a0 is bk-1‘s last preference (i.e., we have cycled)
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RUNNING THE 
ALGORITHM: PHASE 2

Alice Dave Frank

Bob Eve

Carol Frank Dave

Dave Carol Alice

Eve Bob

Frank Alice Carol

77

(a0,b0),(a1,b1),…,(ak-1,bk-1) 
such that:
• bi is ai’s second 

preference 
• ai+1 is bi’s last 

preference
• a0 is bk-1‘s last 

preference

a0 b0

b0 a1

a1 b1

b1 a2



RUNNING THE 
ALGORITHM: PHASE 2

Alice Dave Frank

Bob Eve

Carol Frank Dave

Dave Carol Alice

Eve Bob

Frank Alice Carol
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a0 b0

b0 a1

a1 b1

b1 a2

Next: bi rejects ai+1

(a0,b0),(a1,b1),…,(ak-1,bk-1) 
such that:
• bi is ai’s second 

preference 
• ai+1 is bi’s last 

preference
• a0 is bk-1‘s last 

preference



RUNNING THE 
ALGORITHM: PHASE 2

Alice Dave Frank

Bob Eve

Carol Dave

Dave Carol Alice

Eve Bob

Frank Alice
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a0 b0

b0

a1 b1

b1 a2

Next: bi rejects ai+1

(a0,b0),(a1,b1),…,(ak-1,bk-1) 
such that:
• bi is ai’s second 

preference 
• ai+1 is bi’s last 

preference
• a0 is bk-1‘s last 

preference



RUNNING THE 
ALGORITHM: PHASE 2

Alice Frank

Bob Eve

Carol Dave

Dave Carol

Eve Bob

Frank Alice
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a0 b0

b0

a1 b1

b1

Next: bi rejects ai+1

(a0,b0),(a1,b1),…,(ak-1,bk-1) 
such that:
• bi is ai’s second 

preference 
• ai+1 is bi’s last 

preference
• a0 is bk-1‘s last 

preference



Claim
Irving’s algorithm for the stable roommates 

problem terminates in polynomial time –
specifically O(n2).

This requires some data structure considerations
• Naïve implementation of rotations is ~O(n3)

81



ONE-TO-MANY MATCHING
The hospitals/residents problem (aka college/students 
problem aka admissions problem):
• Strict preference rankings from each side

• One side (hospitals) can accept q > 1 residents

Also introduced in [Gale and Shapley 1962]
Has seen lots of traction in the real world
• E.g., the National Resident Matching Program (NRMP)

• Other American, British, and Canadian medical labor markets

• Canadian lawyer labor markets

• Sororities
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HISTORY OF THE NRMP

1940’s Fierce 
competition, 
eventual market 
failure

1900-ish first medical internships

1951 First centralized clearing market

1970s More couples on the 
market

1995 Crisis of 
confidence

1996-7 Redesign completed and 
implemented

[Roth 2002]



NRMP SIMPLIFIED:
A GALE-SHAPLEY APPROACH

84

Idea: Hospitals propose to as many doctors as they have open 
spots. Doctors accept/reject as normal. Repeat until done.

Capacity 3

Capacity 1

Capacity 2
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Idea: Hospitals propose to as many doctors as they have open 
spots. Doctors accept/reject as normal. Repeat until done.

Capacity 3
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Capacity 1



NRMP SIMPLIFIED:
A GALE-SHAPLEY APPROACH
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Idea: Hospitals propose to as many doctors as they have open 
spots. Doctors accept/reject as normal. Repeat until done.

This was the 1951 version of the market

Hospitals proposing: hospital-optimal, doctor-pessimal

Other idea: Doctors propose to their top hospital. Hospitals 
accept/reject as normal up to their capacity. Repeat until done.

Doctor proposing: doctor-optimal, hospital pessimal

In NRMP: We ended up switching to this version.



TRUE NRMP: NOT SO 
SIMPLE

91

We have four main matching variations:

• Couples: pairs who seek “nearby” positions

• Program types: specific “1st year programs” are prereqs for 
specific “2nd year programs”.

• Applicants match with 2nd year programs AND one of the 
prereq 1st year programs

• Capacities between 1st and 2nd year programs are linked
• Even slots: programs requiring an even number of residents

Like before, this breaks the theory.



HANDLING COUPLES
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Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as 
pairs.
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> >Couples list ranks as 
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Is this a stable matching?



HANDLING COUPLES
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Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as 
pairs.

No! Hospital A and Chloe are 



HANDLING COUPLES
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Andrew Hospital A
Hospital B

Hospital C
Hospital CBart

Chloe Hospital A Hospital B

Hospital A-1 Andrew Chloe
Hospital B-1 Chloe Bart
Hospital C-2 Bart Andrew

> >Couples list ranks as 
pairs.

Sometimes, there are no stable matches  



COMPLEMENTARIES
EFFECTS

Simple Markets Markets with Complementaries

Optimal stable matchings exist No stable matching may exist. Even if 
they do, we may not be able to 
achieve an optimal-resident or hospital 
solution

Same applicants matched, same 
positions filled (Rural Hosp’ls Thm)

Different stable matchings may have 
different applicants and positions filled

When applicant proposing is used a 
dominant strategy for applicants is to 
submit true preferences

No algorithm where a dominant 
strategy for all agents to state true 
preferences



EXPLORING 
COMPLEMENTARIES
Are there a lot of variations?

• 4% couples
• 8-12% submit supplemental rank order lists (ROLs)
• 7% of programs have positions that revert to other positions if 

unfilled
• Thoracic Surgery match is a simple match

Two (of many) questions to ask:
• Does a program optimal solution make the physicians happy?

• Can applicants act strategically?



THE PREEXISTING 
ALGORITHM
Phase 1

• Program proposing
• Ignores most variations
• Couples hold onto offers

Phase 2
• Identifies instabilities

Phase 3
• Fixes instabilities one by one
• Sometimes couples propose to programs

When no match variations are present this produces 
program-optimal stable matching (Thoracic Surgery)



THE NRMP ALGORITHM

𝐴𝐴 0 is the set of all 
hospitals.
𝐴𝐴 1 is 𝐴𝐴 0 plus one 
applicant
𝑀𝑀 1 is a matching found on 
𝐴𝐴 1 .
𝐴𝐴 2 is 𝐴𝐴 1 plus one 
applicant S(1)
𝑀𝑀 2 starts as 𝑀𝑀 1 , where 
𝑆𝑆(2) proposes until 
accepted, and 𝑆𝑆 1 may 
have to re-propose.
…
𝑀𝑀 𝑘𝑘 starts as 𝑀𝑀 𝑘𝑘 − 1 , 
where 𝑆𝑆(𝑘𝑘) proposes until 
accepted, any displaced 
people may repropose, and 
so on.

𝑨𝑨 𝟎𝟎
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THE NRMP ALGORITHM: 
COUPLES AND PREREQS
Couples:
• When a person is displaced, so is their partner. As a couple, they 

propose down their list.
• A new empty slot gets opened by partner. Add this to “program 

stack”.
Prerequisite programs:
• If a displaced person loses 2 slots, add slot to program stack.
• If proposer is accepted by such a program, then continue applying 

to prerequisite programs.
• This may displace 2 people. Just process them one after the 

other.
Once applicants are done, remove programs from program stack one 
by one. Allow applicants with potential instabilities to propose again.

Happens 
at the end 

of each 
iteration



THE NRMP ALGORITHM: 
EVEN/ODD AND REVERSIONS
Even/Odd:
• Remove a single applicant as necessary.

• Displaced people can then continue to propose.

Reversions:
• All hospitals decide how many slots to revert for each program.

• Empty slots are added to the program stack.

• We again process the program stack as before.

Happens 
at the end 

of the 
algorithm



LOOPS IN THE 
APPLICANT PROPOSING 
ALGORITHM

…
Loops can be detected. Then either:

• We can resolve by rerandomizing processing orders on stacks

• They imply no stability exists. This is rare.



SEQUENCE CHANGES
Ran computational experiments

Differences in matches was extremely small and did not 
appear to be systematic

Did effect number of loops
• Fewest when couples where introduced last



RESULTS OF THE NEW 
ALGORITHM

Would be 
zero by 
Rural 

Hosp’ls, 
still small 
though

0.1% of 
applicants 
affected, 
0.5% of 

programs 
affected

Most 
affected 

applicants 
preferred 
new, most 
affected 

programs 
did not



IS THE CHANGE 
WORTH IT?
0.1% of applicants affected
Most of those affected prefer the new algorithm

0.5% of programs affected
Most of those affected prefer the old algorithm

This does not imply the associated change in welfare is small
• Large increase for affected applicants
• Small decrease for the affected programs



STRATEGIC BEHAVIOR 
OF PARTICIPANTS



STRATEGIC BEHAVIOR 
OF PROGRAMS
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