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Illustration of problem

• Suppose you’re running a fruit 
stand on the side of the road, 
selling apples and oranges.
• You want to put a sign up

advertising your prices
• People will drive by. If they like your 

prices, they’ll buy, otherwise they 
will keep driving.
• What prices maximize expected 

revenue?
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Key aspects of this problem

• For 1 good, just set a price (Econ 101 MR = MC)
• For multiple goods, many more decisions
• Discount for buying in bulk?
• Discount for bundles?

• Interesting history
• early work by Adams and Yellen 1976
• some progress in 2000s (Manelli-Vincent, Pavlov, Daskalakis et al.)
• still not completely solved

• We usually call the set of prices a “menu”



Alternative – direct revelation mechanism

• You are going to ask a person 
how much they like apples and 
oranges.
• Based on what they say, you 

are going to take some money 
out of their bank account and 
give them apples and oranges.
• You don’t want people to lie
• It’s just single-agent 

mechanism design.
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Review: Mechanism Design Setting

• Private-value model – assume agent has private type x
• Concretely: it is a vector saying how much each item is worth

• Mechanism asks for x, chooses allocation a(x) and payment p(x)
• Agents can lie about x, and we want to disincentivize this 

(strategyproof), and promise positive utility (individually rational)
• We don’t know x, but we know it was drawn from a distribution P(x)
• Goal: maximize expected revenue over P(x)



These are equivalent problems!

• Recall the revelation principle: it tells us that menus can be 
transformed into truthful direct-revelation mechanisms
• Less obviously, for single agents, every truthful direct revelation 

mechanism has a corresponding menu – this is known as the taxation 
principle
• In fact, there is a relationship of duality between direct-revelation 

mechanisms and menus.



The Outline From Here

• Motivation for problem: picking the optimal menu
• Direct-revelation mechanisms

• Mechanisms as utility functions
• Properties of mechanisms ó properties of their utility functions

• Detour: convex functions
• Convex sets and functions
• Convex conjugate operation
• Max-over-affine representation

• Back to menus: conjugates of utility functions
• Wednesday: review, examples of mechanisms, and ML for learning optimal 

mechanisms



Mechanisms as Utility Functions

• The utility function maps a type (how much each good is valued) to 
how much utility a bidder with that type will get.
• Two components:
• You get positive utility for the items you receive
• You get negative utility for paying money

• Suppose we have any allocation and payment rule – these induce
some utility function



Formal Definitions

• Private types x denoted in red. Think of it as a column vector giving 
the true value of each item.
• Allocations a denoted in blue. Think of them as row vectors specifying 

how much of each item.
• Inner product 𝑎 ⋅ 𝑥 gives value of an allocation. (Primal/dual

relationship)
• Mechanism has allocation rule a(x). Value from allocation is 𝑎(𝑥) ⋅ 𝑥

Subtract payment p(x).
• Total utility is 𝑎(𝑥) ⋅ 𝑥 – p(x).



Concrete Example – 1D

$0.50



Every Valid Utility Function Gives Some a, p

• Mechanism gives utility u(x) 
• Assert a(x) = u’(x) – allocation 

is gradient of utility
• Agent welfare from getting 

items is u’(x) ⋅ 𝑥
• Payment p(x) is then 

necessarily u’(x) ⋅ 𝑥 - u(x)
• u’(x) ⋅ 𝑥 – (u’(x) ⋅ 𝑥 - u(x)) = 

u(x), so this doesn’t cause 
problems (not a proof 
though)

Slope of tangent line --
allocation

Y-intercept – payment 
charged



Properties of Utility Functions

• Utility functions can be identified with mechanisms
• Recall our mechanism design goal: truthfulness (aka DSIC, 

strategyproofness) and IR
• Bidders have some value x but they are allowed to lie about it
• We want no incentive to lie
• We want no negative utility

• What does this mean in terms of the utility function?



Individual Rationality

• Individual rationality just means 
no negative utility
• Literally – just make sure utility 

function is not negative
• Intuitively, the buyer can always 

walk away



Truthfulness and 
Convexity

• Blue line: mechanism utility u(x)
• Bid is 0.5. Orange line: utility from 

untruthfully bidding 0.5, as your true 
type varies. Tangent to curve (allocation 
is u’(x))

• If u(x) is non-convex, there is a region 
(red) where you can benefit from lying



Recap

• Identify direct revelation mechanisms with utility functions
• Properties we want as mechanism designers 
• IR – just make sure function is nonnegative
• Strategyproof – make sure function is convex

• Mechanism design is just choosing your favorite convex, nonnegative 
utility function (how to do that?)
• Next: more detail on convexity



Convex Sets

• What makes a set convex? ”Draw a 
line and it stays in the set.”

∀𝑥, 𝑦 ∈ S
∀𝜆 ∈ 0,1
𝜆𝑥 + 1 − 𝜆 𝑦 ∈ S



Convex Functions

• What makes a function convex? “It 
curves up.”
• Tangent line always beneath the 

function.
• Derivative is increasing (second 

derivative positive)
• Epigraph (set of all points above the 

function) is a convex set
• Affine (including linear) functions 

are convex and concave
• All of this generalizes to multiple 

dimensions

𝜕!𝑓
𝜕𝑥! ≥ 0

∀𝑥!, 𝑥"
∀𝜆 ∈ 0,1
𝜆𝑓 𝑥! + 1 − 𝜆 𝑓 𝑥" ≤ 𝑓(𝜆𝑥! + 1 − 𝜆 𝑥")



Convexity-Preserving Operations

• Let 𝑓!, 𝑓", ⋯ , 𝑓# be convex functions. Many operations 
preserve convexity. Key examples:
• 𝑓$ + 𝑓% is convex
• 𝑐𝑓$ for positive 𝑐 is convex
• 𝑓$(𝐴 𝑥 + 𝑏) is convex  (linear transformation)

• Crucially, the “pointwise maximum” operation is convex:
• 𝑔 𝑥 = max

$
𝑓$(𝑥) is convex

• This will be very important, as we’ll see

Pointwise max of 3 convex functions (red) is also convex.



Pointwise Maximum of Affine Functions

• Affine functions are convex, 
so their pointwise maximum 
makes a convex function 
(drawn in red).

• In fact, as we will see, this is 
an “if and only if” 
relationship – every convex 
function can be represented 
as a max over affine functions

𝑓 𝑥 = max(0.5𝑥 − 0.3, −0.8𝑥 + 0.5,0.1𝑥 + 0)



Convex Conjugate

• The convex conjugate is an extremely important operation.
• It is the following operation:

𝑓∗ 𝑎 = sup
1
𝑥 ⋅ 𝑎 − 𝑓(𝑥)

• Takes a function on column vectors, produces a function on row 
vectors (primal/dual)
• Convex conjugate of ANY function well defined, and results in a 

convex function.
• We’ll focus on conjugate of a convex function. In that case, f** = f.



Tangent Lines and Convex Functions

• Remember one definition of 
convexity – tangent lines always 
below function
• Hand-waving argument: all the 

tangent lines, considered together, 
completely define your function
• Convex conjugate f* defines 

concrete relationship between 
tangent lines and f



Geometric Intuition for the Convex Conjugate
𝑓 𝑥 = max(0.5𝑥 − 0.3, −0.8𝑥 + 0.5,0.1𝑥 + 0)

Given any possible slope of a tangent line, the 
conjugate is going to tell you which y-intercept to 
assign, to rebuild f.

𝑓∗ 0.5 = 0.3

𝑓∗ −0.8 = −0.5

𝑓∗ 0.1 = 0

Many slopes aren’t found, e.g. 𝑓∗ 1 = ∞

Non-differentiable points have many other 
possible tangent lines (subgradients) – let’s 
just not worry too much about that.



Max-over-affine representation is universal

• It is a fact that for any convex function 𝑓,𝑓∗∗ = 𝑓.
𝑓∗ 𝑎 = sup

1
𝑥 ⋅ 𝑎 − 𝑓(𝑥)

𝑓∗∗ 𝑥 = sup
2
𝑥 ⋅ 𝑎 − 𝑓∗(𝑎) = 𝑓 𝑥

• Consider all points 𝑎 such that 𝑓∗(𝑎) is finite. Each of those defines 
an expression 𝑥 ⋅ 𝑎 − 𝑓∗ 𝑎 which is linear as a function of 𝑥
• 𝑓 𝑥 can be written as a max over all those linear expressions – and 

this holds for every convex function.



Back to mechanisms

• Write down our truthful direct revelation mechanism as a convex 
utility function u(x).
• Allocation a(x) = u’(x) (slope), payment u’(x)*x – u(x) (y-intercept)

• The convex conjugate then defines a function 𝑢∗(𝑎) mapping 
outcomes to payments – the menu.
• Taking the conjugate again recovers the original utility function.



Concrete Example

• 𝑢 𝑥 = max 1,0 ∗ 𝑥 − 0.5, 0,1 ∗ 𝑥 − 0.6, 1,1 ∗ 𝑥 − 0.95,0

• 𝑢∗ 1,0 = 0.5

• 𝑢∗ 0,1 = 0.6

• 𝑢∗ 1,1 = 0.95
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Conclusion

• This always works, for any convex utility function.
• So: direct revelation mechanisms have convex utility functions, which 

can be turned into menus
• Menus have corresponding convex utility functions
• Thus, we’ve completely characterized feasible mechanisms and 

connected them to feasible menus



Optimal mechanism design

• Next lecture – choosing optimal mechanisms
• Mixed bundling is allowed, but is it necessary?
• Menu-size complexity?
• Checking optimality?
• Machine learning for finding optimal mechanisms


